
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 44-58
ISSN: 1646-3692

 44

DEPENDABILITY OF THE SOFTWARE
IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

Piotr Gawkowski1, Maciej Ławryńczuk2, Piotr Marusak2, Janusz Sosnowski1
and Piotr Tatjewski2

1 Institute of Computer Science
{P.Gawkowski, J. Sosnowski}@ii.pw.edu.pl

2 Institute of Control and Computation Engineering
Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
{M.Lawrynczuk, P.Marusak, P.Tatjewski}@ia.pw.edu.pl

ABSTRACT

The paper studies dependability of software implementation of the explicit DMC (Dynamic Matrix
Control) Model Predictive Control (MPC) algorithm applied for a rectification column. The process with
two inputs and two outputs with strong cross-couplings and significant time delays is studied. The algo-
rithm’s control law is calculated off-line. Dependability is evaluated experimentally using software
implemented fault injection approach. The injected faults influence the quality of rectification process.

KEYWORDS

dependability evaluation, fault injection, DMC algorithm, rectification process, process con-
trol

1. INTRODUCTION

Faults appearing during system operation may be critical for implemented applications. They
can result in logical errors and application failure (Benso and Prinetto, 2003; Gawkowski and
Sosnowski, 2003). It is particularly critical in many reactive systems (e.g. nuclear plants, sat-
ellites, aircrafts, chemical industry, medicine). Hence, an important practical issue is to evalu-
ate dependability of software applications in the presence of faults. This paper studies the
dependability of software implementation of the explicit version of Dynamic Matrix Control

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 45

(DMC) Model Predictive Control (MPC) algorithm applied to a rectification column (Wood
and Berry, 1973). In the research the software implemented fault injector adapted to reactive
applications is used (Gawkowski and Sosnowski, 2007).

Model Predictive Control is practically the only advanced control technique which have
found acceptance in the process industry and is successfully applied in practice (Ławryńczuk
et al, 2007; Maciejowski, 2002; Morari and Lee, 1999; Rossiter, 2003; Tatjewski, 2007; Tat-
jewski et al, 2006). In the MPC algorithms the control action is calculated using a model of
the process. If the model is accurate enough, performance offered by MPC algorithms can be
better than the one offered by classical control algorithms, especially for processes with diffi-
cult dynamics, e.g. with significant time delay. Moreover, thanks to using the process model,
the MPC algorithms contain the decoupling mechanism inside. It is very important for Multi-
Input Multi-Output (MIMO) processes with strong cross-couplings. Among different MPC
techniques, DMC is often applied in practice because it uses a step-response model of the
process which is very easy to obtain (Cutler and Ramaker, 1979; Tatjewski, 2007).

The paper is structured as follows. In the next Section the explicit DMC control algorithm
is described in a version for MIMO control processes. In Section 3 fault injection test-bed,
experiment set-up and some new aspects of experiment conduction according to control algo-
rithms specificity are presented. In Section 4 results of conducted experiments are discussed.
Some software-based dependability improvements are also presented. The last section summa-
rises the paper.

2. DMC ALGORITHM FOR MIMO PROCESSES

The distinctive feature of the MPC algorithms is that the on-line calculation of control policy
considers the future behaviour of the control process many time-steps ahead. The prediction is
made using a dynamic model of the control process. Typically, the future control values are
chosen in such a way that the predicted behaviour of the control algorithm minimises a per-
formance function formulated usually as follows:

 () ()∑ ∑ ∆⋅+∑∑ −⋅=
=

−

=
+

= =
+

i uy n

j

N

i

j
kik

j
n

j

N

i

j
kik

j
k

j uyyJ
1

1

0

2

|
1 1

2

| λψ , (1)

where j
ky is a set-point value for the jth output, j

kiky |+ is an output value for the (k+i)th sam-

pling instant predicted at kth sampling instant (the way of its calculation depends on a model
used for prediction), j

kiku |+∆ are future changes in the manipulated variables, ψ j ≥ 0 and λ j ≥

0 are weighting coefficients for the predicted control errors of the jth output and for the
changes of the jth manipulated variable, respectively, N and Nu denote prediction and control
horizons, ny, ni denote the number of outputs and inputs, respectively.

The performance function (1) can be rewritten in the following way:

 () () uΛuyyΨyy ∆∆ ⋅⋅+−⋅⋅−= TTJ , (2)

where Ψ is a weighting matrix of dimensionality nyN×nyN, Λ is a weighting matrix of dimen-
sionality niNu×niNu, ∆u is a vector of dimensionality niNu composed of the future increments
of control values, y is a vector of dimensionality nyN composed of set–point values j

ky , y is a

IADIS International Journal on Computer Science and Information Systems

 46

vector of dimensionality nyN composed of output values j
kiky |+ predicted using a control proc-

ess model. If the prediction is performed using a linear process model then the superposition
principle can be used and the vector y can be decomposed as:

 ,0 uGyy ∆⋅+= (3)

where G is a matrix of dimensionality nyN×niNu called a dynamic matrix composed of the
elements of the process step response, y0 is a vector of dimensionality nyN called a free re-
sponse because it contains elements equal to the values of the process outputs in the future in
the situation if manipulated signals are frozen at the kth sampling instant (Maciejowski, 2002;
Rossiter, 2003; Tatjewski, 2007).

If the performance function (2) is minimised without constraints, the optimal unique solu-
tion is:

 ()0yyKu −⋅=∆ , (4)

where

 () ΨGΛGΨGK T ⋅+⋅⋅=
− T1 . (5)

Only the elements j
kku |∆ of the vector ∆u are applied to the process and then the procedure

is repeated in the next sampling instant. The step-response model of the controlled process
used by the DMC algorithm is following:

 ,
1

,
1

1

,∑∑
=

−

−

=
− ⋅+∆⋅=

in

m

m
Dk

mj
D

D

i

m
ik

mj
i

j
k ususy (6)

where m
ku∆ is a change in the mth manipulated variable at the kth sampling instant, mj

is ,
(i = 1,…, D) are step response coefficients of the controlled process describing influence of
the mth input on the jth output, D is equal to the number of time instants after which the coeffi-
cients of the step responses can be assumed as settled, m

Dku − is a value of the mth manipulated
variable at the (k–D)th sampling instant.

The DMC control law (4) can be formulated:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆

∆
∆

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆

∆
∆

−

−

−
−

=
∑

iyyi n
jk

jk

jk
D

j
n
k

n
k

kk

kk

n
kk

kk

kk

u

u
u

yy

yy
yy

u

u
u

MMM

2

1

1

1

22

11

|

2
|

1
|

u
j

e KK , (7)

where eK is a matrix of dimensionality ni×ny and u
jK , j=1,…,D–1 are matrices of dimension-

ality ni×ni composed of controller coefficients. Because these matrices and the resulting con-
trol law are calculated off-line, the discussed MPC algorithm is named the explicit one. The
detailed description of the explicit DMC algorithm derivation can be found in (Pułaczewski,
1998; Tatjewski, 2007).

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 47

3. EXPERIMENT SET-UP

The concept of the SoftWare Implemented Fault Injector (SWIFI) is based on the software
emulation of a fault during the run-time of the application under test. In this research FITS
fault injector is used (Gawkowski and Sosnowski, 2006; Sosnowski et al, 2003a). It uses stan-
dard Win32 Debugging API to control the execution of the software application under tests. It
captures all events (e.g. exceptions generated by the tested program), can set single step exe-
cution, trap on specific conditions breaking tested program execution and then perform re-
quired actions in the context of that program (e.g. read and change program’s memory con-
tent, get and change states of registers). All of that allow building complex disturbance sce-
narios, which can emulate fault appearance of a given type (e.g. execution of some extra in-
structions in the tested program or modifications of the memory/CPU registers states at speci-
fied conditions). It is worth to note that the application source code does not require any in-
strumentation. However, some simple instrumentation can help to obtain more detailed
knowledge on the fault effects and future improvement of the application. It will be discussed
in section 3.2.

Program data

Program under test Golden Run

Reference
results

Fault Injector

GR.logExp. details

Comparison

Figure 1. Fault injection scheme

The general idea of fault injection experiments is shown in Fig 1. For the analysed applica-
tion (program and input data) we generate so called golden run which provides us with refer-
ence results and the application profile (GR.log). During this step the preliminary statistical
analysis is made in parallel to better characterize the tested application and prepare proper
fault disturbance profile for the experiments. This is a time consuming task performed at the
machine instruction level (in CPU’s single-step mode). We distinguish two views on the sta-
tistics: the static one describes static code analysis of the application while the dynamic one
relates to the executed instruction stream. The analysis includes the following statistics:
• mnemonics (number and percentage of different mnemonics and their operand vari-

ants),
• binary code analysis: number of zero and one bits, size of the code,
• opcode length and type analysis,

IADIS International Journal on Computer Science and Information Systems

 48

• CPU resources usage profile: number of reads, writes, state changes of the given CPU
register, minimal and maximal values, bit position usage and the activity of the register
(Gawkowski et al, 2005).

Such analysis is helpful in further experiment profiling (helps to point out which resources
are used and which are not), interpretation of obtained experimental results (e.g. correlation
with resource activity), normalization of experimental results (Gawkowski et al, 2005).

After the Golden Run, in the series of subsequent executions called tests, FITS injects
faults into the running application and compares its behaviour with the reference one. As the
result we get general statistics of test results and some more detailed information (exp. de-
tails). The whole fault injection process is controlled by the operator by means of a graphical
interface but it is fully automated so no human interaction is needed during experiment run.

In the following the process controlled by the analysed control algorithm (DMC) is de-

scribed, instrumentation (facilitating further analysis) of the tested application is introduced,
then the fault insertion policy, and finally, applied result qualification is given.

3.1 MIMO process description

The process is a rectification column with two manipulated (inputs) and two controlled (out-
puts) variables shown in Fig. 2. It is described by the continuous-time transfer function model
(Pułaczewski, 1998; Wood and Berry, 1973) (time constants in minutes):

),(

12,13
9,4

19,14
8,3

)(
)(

14,14
4,19

19,10
6,6

10,21
9,18

17,16
8,12

)(
)(3

4

2

1

48

4

2

1
sU

s

s
e

sU
sU

s
e

s
e

s
e

s
sY
sY

s

ss

s

⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

++⎥
⎦

⎤
⎢
⎣

⎡
⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
−

+

+
−

+=⎥
⎦

⎤
⎢
⎣

⎡
−

−−

−

 (8)

where the controlled variables are: y1 – methanol concentration in the distillate (the top prod-
uct), y2 – methanol concentration in the effluent (the bottom product), the manipulated vari-
ables are: u1 – flow rate of the reflux, u2 – flow rate of the steam into a boiler, u3 is feed flow
rate (a disturbance). All process variables are scaled.

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 49

Evaporator

Condenser

Feedstream

Bottom
product

Top product
LC

LC

DMC algorithm

y2

y1

FC

u1

Lsp

 Lsp

u3

Boiler

u2

FC

Q

Figure 2. Rectification column control system structure

For the considered rectification process the explicit DMC algorithm is designed: the sam-

pling period Tp=1 min is assumed, the dynamics horizon is equal to the prediction horizon
D=N=100, the control horizon Nu=50, the values of weighting coefficients are: ψ1=ψ 2=1,
λ1=λ2=10. The simulation horizon is 300 discrete time-steps. Structure of the control system
with the explicit DMC algorithm is shown in Fig. 3.

3.2 Code instrumentation

FITS disturbs directly the tested application only within so-called testing areas (Gawkowski
and Sosnowski, 2007). Testing areas limit the scope of disturbances only to the selected parts
of the application. Here, the application also contains the mathematical model of the con-
trolled process for simulation. The parts of the tested application disturbed during the experi-
ments (dashed box) as well as process models (not disturbed) are marked in Fig. 3.

IADIS International Journal on Computer Science and Information Systems

 50

1
ky

+

–
+

Process ∑
−

= −

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆
∆

⋅
1

1
2

1D

j jk

jk

u
uu

jK⎥
⎦

⎤
⎢
⎣

⎡

−
−

22

11

kk

kk

yy
yyeK

1z1
1

−−
2
ky 2

ku

1
ky

2
ky

1
ku

2
ku∆

1
ku∆

+ –
1z1

1
−−

3
ku

+

fault injection

Figure 3. Structure of the control system with the explicit DMC controller

The controlled process is not fault-affected during the experiments as shown. The tested
application is also instrumented in order to calculate some measures (e.g. related to internal
variables values, output signal deviations, process outputs), save them into the output file
(separate for each test) and send to the fault injector using user-defined messages (Gawkowski
and Sosnowski, 2007). Those messages are collected by FITS and reported within the experi-
ment summary. It is helpful in further analysis of test cases (e.g. by finding assigned test cases
and correlating them with the saved test outputs). Here, the distribution of the rectification
column product deviation over the tests is build (Section 4). The output files (unique for each
test – filenames are assigned by FITS) consist the set of control variables’ values as well as
the column’s products values over the simulated time period.

3.3 Fault injection policy

FITS simulates faults by disturbing the running application. The following fault types are
possible: bit inversion, bit setting, bit resetting, bridging (logical AND or OR of coupled bits).
It is also possible to select pseudorandom generation of fault types (single, multiple). Duration
of the fault is specified in number of instructions for which the fault must be active starting
from the triggering moment. This mechanism gives the possibility of setting transient and
permanent faults. The assured fault specifications make it possible to model physical faults in
various functional blocks of the system, in particular, processor sequencer, processor ALUs,
FPU, general purpose and control registers, bus control unit, RAM memory. FITS provides
high flexibility in specifying the moment of fault injection - fault triggering point. The set of
faults to be inserted can be specified explicitly or generated in a pseudorandom way.

In this study the single bit-flip faults within CPU and FPU registers, application’s data and
machine instruction code are considered. Faults are injected pseudorandomly in time (program
execution) and space (bit position within disturbed resource, distribution over application's
memory). Such a fault model well mimics Single Event Upset (SEU) effects (Gawkowski et
al, 2005; Gawkowski and Sosnowski, 2003; Sosnowski et al, 2005).

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 51

3.4 Qualification of experimental results

The correctness qualification of results produced by the application under test is more compli-
cated in case of applications related to control systems (Sosnowski et al, 2005) than in case of
simple calculation-oriented ones. Control algorithms require complex analysis of the con-
trolled process behaviour. The standard factor SSE (Sum of Squared Error) is used as a meas-
ure of result (y1, y2) correctness. The reference SSE value (obtained during referential execu-
tion – non-faulty) is 2.53 (due to delayed response and feed stream disturbances). The whole
experiment is conducted by FITS automatically. At the end of the experiment synthetic (ag-
gregated) results for each fault location are given. In general, 4 classes of test results are dis-
tinguished:

• C: correct behaviour (SSE<5),
• INC: incorrect (unacceptable) behaviour (SSE≥5),
• S: test terminated by the system due to un-handled exception,
• T: timed-out test.

Analysis of fault effects requires detailed information upon the faults injected and the ap-
plication behaviour. FITS provides details about every test (simulated fault injection). Hence,
manual replay of the whole test execution can be done. Moreover, all the events and user
messages occurring during the test are recorded. The tested application is instrumented to save
its outputs (here simulation results, i.e. a set of control signals in subsequent sampling in-
stants) into separate files for each test (file names are managed by FITS). This gives a possi-
bility for post-experiment analysis of fault effects in the correlation with the injected fault and
observed behaviour for each test.

4. SIMULATION RESULTS

Three versions of software implementations are considered. All of them are written in C lan-
guage and compiled using Microsoft Visual C++ 2005. The first, the rudimentary version, is
based on direct implementation of DMC algorithm. Two remaining implementations contain
some hardening techniques.

4.1 Rudimentary implementation

The first examined implementation of the control algorithm takes 124 machine instructions
(405 bytes of the static code). The algorithm needs execution of 1020000 instructions for the
whole simulation horizon (300 discrete sampling instants). As the static and dynamic profile is
different, the distribution of mnemonics in the static code as well as in the executed stream
(dynamic) is presented in Fig. 4.

IADIS International Journal on Computer Science and Information Systems

 52

0

5

10

15

20

25

30

mov

su
b fld

lea

fst

fxc

h
tes

t jle

fst
p

fad
dp

jnz

ad

d
fm

ul

jg

fad
d

fld
z

fsu
b xo

r
im

ul

Static (%) Dynamic (%)

Figure 4. Distribution of DMC mnemonics in static and dynamic profile

It is worth noting that floating point instructions constitute 38% of the code in the static
code while dynamically they are executed in 54,8% of time. Moreover, instructions organising
computational loops in the DMC implementation (sub, test, add, jnz, jg) take another 38%.
Hence, the application is strongly computational with high degree of FPU utilisation. Never-
theless, the instruction set used is rather limited. On the other hand, the activity ratio for CPU
resources is high (98, 94, 80, 98, 97, 81 % for EAX, EBX, ECX, EDX, ESI and EDI, respec-
tively) (Sosnowski et al, 2005).

Faults in the CPU and FPU registers, data area of the application, executed instruction
stream, and static code image are considered. For each fault location approximately 1000
disturbed executions are investigated (single fault injected in each application execution). The
summary of results (according to categories described in Section 3) is presented in Fig. 5. As
the algorithm uses many parameters (400) it is very robust to fault located in the data area –
there are only few data memory locations critical for the algorithm – most of the data corre-
spond to the algorithm’s parameters. The high degree of FPU robustness could be astonishing.
Past experience shows that the FPU is rarely used hard (Gawkowski and Sosnowski, 2003)
(e.g. only few FPU stack locations used simultaneously). This results in overall low fault
sensitivity of the FPU. Nevertheless, there are some very sensitive locations within the FPU
(e.g. control registers).

The most fault sensitive resource of the DMC controller is its code. Fortunately, there are
software techniques (e.g. exception handling, duplication of critical data and code) that can be
applied at the source code level to provide fault robustness (Gawkowski and Sosnowski,
2005a; 2005b; Gawkowski et al, 2005; Gawkowski and Sosnowski, 2002). They have already
proved their advantages; nevertheless, their effectiveness in the considered algorithm is inves-
tigated in Section 4.2. One can expect, that in the DMC case some simplifications in the fault
hardening implementations can be applied without noticeable aggravation of dependability
and performance (i.e. rare errors on the controlled process inputs are not critical for its behav-
iour).

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 53

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Data FPU Instr.
Stream

Static
code

T
S
INC
C

Figure 5. Experimental results of rudimentary DMC implementation

Analysing fault susceptibility it is worth correlating the observed effects (simulated proc-
ess behaviour) with the injected fault details in accordance to the source and machine code of
the disturbed DMC. Fig. 6 and 7 present plots of the application outputs (y1

, y2 – left plots and
u1

, u2 – right plots) over the DMC iteration number in case of sample fault disturbed execu-
tions. For reference the undisturbed simulation results are shown, i.e. the golden run (blue
lines). The simulation scenario is as follows (blue lines). At the beginning, the process is
driven to a given set-point. Then, at sampling instant 30 the change in the feed stream flow
rate (u3) is introduced (from 0 to 0.1). Another change in u3 is made at the instant 140 (from
0.1 to –0.05).

In the case considered in top plots in Fig 6, the fault is injected at the sampling instant 28.
It results in the change of the faddp instruction into the fmulp (operands remained unchanged).
The instruction disturbed is used to calculate the du1 variable of the DMC algorithm (corre-
sponding to the 1

ku∆ in Fig. 3). As a result the source code statement
du1+=r1[i]*vektup[i] is changed to du1*=r1[i]*vektup[i]. The result of this
disturbance varies on the control signal and process states. For instance, the considered fault
injected at the 28th sampling instant results in SSE=3.39 (Fig. 6 top), at the 101st sampling
instant in SSE=4.25 (Fig. 6 middle), at the 224th – SSE=2.53 (Fig. 6 bottom) (the same as the
reference SSE value). Hence, it disturbs the top product composition.

IADIS International Journal on Computer Science and Information Systems

 54

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

Figure 6. Single bit inversion within the faddp instruction disturbs the top product composition. Faults
injected at sampling instants: top panels: 28th, SSE=3.39, middle panels: 101st, SSE=4.25, bottom pan-

els: 224th SSE=2.53; golden run responses in blue, fault injected responses in red

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 55

More critical situation is illustrated in Fig. 7. Single bit inversion (at 61st sampling instant)
within the same instruction as described above destabilises the process. In this case the in-
struction mnemonic remain unchanged while its first operand changed from st(2) to st(0).
Observed SSE is 4.40.

0 50 100 150 200 250 300
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (min)

y 1

y 2

0 50 100 150 200 250 300
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

time (min)

u 1

u 2

Figure 7. Single bit inversion within the faddp instruction destabilises the process. Fault injected at the
44th sampling instant, SSE=4.40; golden run responses in blue, fault injected responses in red

It is worth noting that overwhelming majority of incorrect behaviour relates to very high
SSE values (higher than 1000). It means that the values of control errors cumulate. At the
other hand it gives the possibility to easily detect such big deviations using additional diag-
nostic subroutines (e.g. assertions on DMC variables).

4.2 Dependability improved implementations

Two software-hardened versions are analyzed. Different parameters for exception handling of
the used compiler are also examined. In rudimentary implementation in C language (not fault
hardened) three parts can be distinguished (referenced in further pseudocode listings – the
whole sequence of these parts is referenced as DMC):

• part_A: calculation of increments of manipulated control variables values (according
to the equation 4, e.g. control errors calculation) – the major part,

• part_B: saving the calculated values of increments into the historical vector of in-
crements (needed for further processing),

• part_C: calculation of manipulated control variables values for the next iteration (in-
tegration of previous values with the increments calculated in current iteration).

The idea of the first hardened implementation is to triplicate the main (i.e. DMC algorithm
calculation) part and to vote over calculated propositions. It is worth to note that no exception
handling is used in this implementation. The summary of the first hardened version (H1) can
be expressed in the form of the following pseudocode:
part_A1; // triplicated part A
part_A2;
part_A3;

IADIS International Journal on Computer Science and Information Systems

 56

voting; // voting on part A results propositions
part_B;
part_C;

The compiler’s flag /EHsc is used. Static code size is 463 machine instructions which corre-
sponds to 1278 bytes. Number of executed instructions for considered simulation horizon is
2 289 794.

The idea of the second hardened implementation is to utilize C++ exception handling stat-
ements to recover from system-detected errors (e.g. memory access violations, FPU excep-
tions) by switching the DMC code to its backup. Moreover, the FPU state is reset as the DMC
is FPU intensive. Previous research showed that FPU resetting is crucial for further calcula-
tions as no further exceptions will be signalled by the FPU and provided results might be
erroneous. The summary of the second hardened version (H2) can be expressed in the form of
the following pseudocode:
try{
 if(modules_switched){
 DMC; }
 else
 throw excp;}
catch(…) {
 if(!already_switched)
 switch_modules;
 _fpreset();
 DMC;}

The compiler’s flag /EHa /fp:except is used in this implementation. Static code size is 130
machine instructions, which corresponds to 485 bytes. Number of executed instructions is
1 941 900.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

CPU Data FPU Instr.
Stream

Static
code

T
S
INC
C

Figure 8. Comparison of experimental results. For each fault location: left bars: the rudimen-

tary implementation, middle bars: H1 - the first hardened implementation, right bars: H2 - the
second hardened implementation.

Fig. 8 compares experimental results obtained in three studied software implementations

DEPENDABILITY OF THE SOFTWARE IMPLEMENTATION OF THE EXPLICIT DMC
ALGORITHM

 57

for faults located in CPU registers, data memory area, FPU registers, executed instructions
stream and static code image. These locations are marked on x-axis.

It is worth noting, that for rudimental and H1 versions the sum of C and INC categories is
almost the same. The poor dependability improvement is a consequence of not integrated
exception handling within the application. System built-in fault detectors (signaled as excep-
tions to the application) are very efficient. H2 version uses alternative code in passive con-
figuration and integrates exception handling mechanisms. The disadvantage of this version is
that only exception occurrence activates the switch to the backup code. The rise of correct
behaviour (C category) percentage comparing to the rudimentary version shows how many
tests can be recovered with the secondary code. On the other hand, existence of tests within
the INC category for H2 denotes that injected faults may result in major deviations without
exception occurrence. They may lead to undetected errors which can influence further execu-
tion (not a temporary value within the iteration boundary). So, further dependability im-
provements of the DMC source code will be focused on building the detectors for such errors.
The considered faults in the code locations (executed instruction stream as well as the static
code image) were designed to mimic mainly memory location faults. Faulty code remains
unchanged as long as it is reloaded from persistent storage (e.g. disk, EPROM, flash RAM). It
is worth to note, that the solution H2 would be very efficient in case of faults located in the
instruction cache as the faulty code could be recovered while flushing the cache or reading the
code from fault robust location.

5. CONCLUSION

The paper studies dependability of software implementation of the explicit DMC algorithm
applied to a rectification process. The process has two manipulated variables, two controlled
variables and significant time-delays. Dependability is examined using software implemented
fault injector. Its functionality towards better fault effect traceability and the whole fault injec-
tion process is described.

Results of the experiments carried out clearly indicate that the well-known and widely
used formulation of the DMC algorithm is susceptible to software faults. It is particularly
important in case of industrial processes such as the considered rectification column because
faults are likely to lead to undesirable behaviour of the process. More specifically, in the least
difficult situation a fault can disturb composition of the products whereas in the most danger-
ous case it can destabilise the controlled process. Technological and financial consequences of
faults are of fundamental importance. Energy losses and unacceptable compositions of the
products (which means that the product cannot be sold) are just two examples of such situa-
tions.

In order to increase fault robustness of software implementation of the DMC algorithm, a
few techniques can be applied. The first choice techniques should be those making possible
creative usage of fault detection. In the case of application considered in the paper, exception
handling brought the significant improvement of the algorithm dependability.

IADIS International Journal on Computer Science and Information Systems

 58

REFERENCES

Benso, A. and Prinetto, P., 2003. Fault injection techniques and tools for embedded systems reliability
evaluation. Kluwer Academic Publishers.

Cutler, R. and Ramaker, B., 1979. Dynamic matrix control – a computer control algorithm. Proceedings
of AIChE National Meeting. Houston, USA.

Gawkowski, P. and Sosnowski, J., 2007. Experiences with software implemented fault injection. Pro-
ceedings of International Conference on Architecture of Computing Systems. VDE Verlag GMBH,
pp. 73–80.

Gawkowski, P. and Sosnowski, J., 2006. Analysing system susceptibility to faults with simulation tools.
Annales UMCS Informatica AI. Vol. 4, pp. 123–134.

Gawkowski, P. and Sosnowski, J., 2005a. Software implemented fault detection and fault tolerance
mechanisms – part I: Concepts and algorithms. Kwartalnik Elektroniki i Telekomunikacji. Vol. 51,
pp. 291–303.

Gawkowski, P. and Sosnowski, J., 2005b. Software implemented fault detection and fault tolerance
mechanisms -- part II: Experimental evaluation of error coverage. Kwartalnik Elektroniki i
Telekomunikacji. Vol. 51, pp. 495–508.

Gawkowski, P. et al, 2005. Analyzing the effectiveness of fault hardening procedures. Proceedings of
11th IEEE Int. On-Line Testing Symposium. pp. 14–19.

Gawkowski, P. and Sosnowski, J., 2003. Dependability evaluation with fault injection experiments.
IEICE Transactions on Information & System. Vol. E86-D. pp. 2642–2649.

Gawkowski, P. and Sosnowski, J., 2002. Experimental Validation Of Fault Detection And Fault Toler-
ance Mechanisms. Proceedings of 7th IEEE Int. Workshop on High Level Design Validation And
Test. Cannes.

Ławryńczuk, M. et al 2007. Multilayer and integrated structures for predictive control and economic
optimisation. Proceedings of IFAC Symposium on Large Scale Systems. Gdańsk, Poland.

Maciejowski, J.M., 2002. Predictive control with constraints. Prentice Hall. Harlow.
Morari, M. and Lee, J.H., 1999. Model predictive control: past, present and future. Computers and

Chemical Engineering. Vol. 23, pp. 667–682.
Qin, S.J. and Badgwell, T.A., 2003. A survey of industrial model predictive control technology. Control

Engineering Practice. Vol. 11, pp. 733–764.
Pułaczewski, J., 1998. Multidimensional DMC algorithm. Report of ICCE WUT no 98–11, Warsaw,

Poland (in Polish).
Rossiter, J.A., 2003. Model-based predictive control. CRC Press, Boca Raton.
Sosnowski, J. et al, 2005. Fault injection stress strategies in dependability analysis. Control and Cyber-

netics. Vol. 33, pp. 679–699.
Sosnowski, J. et al, 2003a. Software implemented fault inserters. Proceedings of IFAC Workshop on

Programmable Devices and Systems. Ostrava, pp. 293–298.
Sosnowski, J. et al, 2003b. Fault injection stress strategies. Proceedings of 4th IEEE LATW 2003 Work-

shop. pp. 258-263.
Tatjewski, P., 2007. Advanced control of industrial processes, Structures and algorithms. Springer.

London.
Tatjewski, P. et al, 2006. Linking nonlinear steady-state and target set-point optimisation for model

predictive control. Proceedings of IEE International Control Conference ICC 2006. Glasgow, UK.
Wood, R.K. and Berry, M.W., 1973. Terminal Composition Control of a Binary Distillation Column.

Chemical Engineering Science. Vol. 28, pp. 1707–1717.

