
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 29-43
ISSN: 1646-3692

 29

TOWARDS MODEL TRANSFORMATION -
A CASE STUDY OF GENERIC FRAMEWORK
FOR TRACEABILITY IN OBJECT-ORIENTED
DESIGNS

Anna Derezińska, Jacek Zawłocki Institute of Computer Science, Warsaw University of
Technology, Nowowiejska 15/19,00-665 Warsaw, Poland

A.Derezinska@ii.pw.edu.pl

ABSTRACT

Model transformation approach allows us to develop automatic and flexible solutions for the software
evolution. Application of model transformation concepts was shown on a case study of a generic
framework for traceability in object-oriented designs. Traceability analysis in the framework is based
on discovering traceability relationships among model elements and identifying dependency areas for
given initial elements. The analysis is controlled by a set of rules that should be easily modified ac-
cording to the project notation, application domain, etc. Three transformations within the framework
were considered: the input transformation of any model to the internal format, the traceability analysis
generating a dependency area for a given model, and the output transformation of the resulting de-
pendency area. They can be realized as model-to-model transformations with respect to their meta-
models and in accordance to the independently specified transformation rules. The language and tools
of the QVT standard proposed by the OMG were applied in the input and output transformations. In
the remaining transformation, traceability rules were defined as automata with transitions labeled with
conditions and actions.

KEYWORDS

model transformation, UML, MDA, QVT, traceability

IADIS International Journal on Computer Science and Information Systems

 30

1. INTRODUCTION

Model Driven Development (or Model Driven Engineering) is an idea promoting the shift
from the code-oriented to model-oriented software production techniques. An important role
is played by models and their transformations.

Model transformation allows defining clearly relationships between models. Performing
model transformation requires understanding of the syntax and semantics of both the source
and target [25]. Therefore, model transformation makes use of metamodeling techniques.
Metamodeling is a common technique for defining precisely a class of models: the abstract
syntax of models and the interrelationships between model elements.

Model Driven ArchitectureTM (MDA) [13,21] was intended as the realization of the
model engineering principles around the set of the Object Management Group (OMG) stan-
dards. One of them is QVT (Query/View/Transformation) [22] devoted to model transfor-
mation and based on metamodeling concepts.

Many approaches to model-to-model transformation have been proposed [5,6], but there
is a lack of sufficient experience in their practical application. Transformation capabilities
of modeling tools available on the market are growing up, but are still premature. An impor-
tant question is how well QVT and other MDA-based solutions fit for different kinds of
transformations [3].

In this paper, we show a practical application of a model transformation in the develop-
ment of a generic software system. The system is a framework for traceability of object-
oriented projects [10,31]. A distinguishing feature of the generic framework is its flexibility.
One of the basic concepts is separation of application logic and its implementation. The
same postulate is true for transformation i.e., separation of transformation rules encapsulat-
ing the internal logic and the transformation execution. Advantages but also drawbacks of
the transformation-based solutions are presented.

Traceability refers to relations, which are defined among different artifacts of a software
development process. It is beneficial in requirements verification and evolution, models and
code development and maintenance, tests generation and management [11,17,18,26-28].

Traceability issues addressed in our framework are aimed at object-oriented projects.
However, those projects can be described at different abstraction levels e.g., consisting of
analytical or implementation classes, but also general concepts from a given domain. The
framework is based on the original ideas of dependency areas developed by one of the au-
thors [7-9], but it is not limited to the traceability strategy proposed for UML. The frame-
work can help solving different problems related to:

- identification of dependencies and inconsistencies in a project,
- impact analysis of changes within a project,
- support for model understanding, including reverse engineered models and legacy sys-
tems,
- creating documentation of a project,
- support for model and code instrumentation.
The rest of the paper is organized as follows. Section 2 explains basic concepts of model

transformation. Next section summarizes briefly main features of the generic framework for
traceability in object-oriented designs. Section 4 describes selected transformation issues
within the framework. Final remarks conclude the paper.

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 31

2. MODEL TRANSFORMATION

Model transformation deals with manipulation of different system abstractions expressed by
models. A variety of software development artifacts can be a subject of transformations.
Survey and classification of model transformation approaches can be found in [5,6].

Model transformation is a key part of MDA that serves as a conceptual framework for
an approach to model-driven development. For creating transformations we can apply the
OMG specification MOF QVT [22]. The QVT Relations language is a declarative language
for model-to-model transformation. It can be used for writing own transformations or adopt-
ing some existing transformations to our needs.

In order to make a transformation between different notations of a model, or between
models of different abstraction, we need a common core of basic concepts. In the QVT
approach this was achieved using the meta-modeling layers developed by the OMG specifi-
cations (Fig. 1). Layer M1 includes models describing systems in different application do-
mains. Model specification languages (e.g., UML) are described by their metamodels (M2
layer). It was provided a language for defining metamodels i.e. a meta-metamodel level,
called MOF (Meta Object Facility). QVT supports a transformation of the MOF metamodel
and, therefore, a transformation of any models defined using MOF.

Figure 1. The role of the MOF in the metamodel hierarchy

A concept of model transformation realized in QVT is illustrated in Fig. 2. There are
two groups of models: source models and target models. These models are instances of
given metamodels. Metamodels can be in general different but both conform to the meta-
metamodel MOF, as they are instances of this meta-metamodel. A transformation is defined
with respect to the metamodels. There is a set of rules defining the transformation process.
The transformation engine converts a source model to the appropriate target model accord-
ing to the transformation rules.

IADIS International Journal on Computer Science and Information Systems

 32

rules

modelmodelsource
 model

target
model

rules

transformation
engine

meta-
model

meta-
modelbased on based on

instance of instance of

Figure 2. Idea of model transformation in QVT

The QVT standard is a general purpose language for model-to-model transformations
and, therefore, can be applied in different situations. The MOF QVT specification can be
used for transformation on different levels of abstraction, for forward, but also reverse
transformation, enabling possibility of automatic synchronizations and re-refinements [12].
In [19] the author points out on the possibility of usage of QVT for description of a generic
model of Quality-Driven Software Architecture (QAMT).

Although QVT was developed by OMG as one of specifications within the MDA ap-
proach, there are many other solutions used for this purposes [1,3]. Czarnecki and Halsed
[6] provided an analysis of different transformation approaches, including QVT proposals.
Different languages were proposed for model transformation purposes: QVT [22], ATL
[15], Viatra2 [2], EWL [16] and others (see survey in [5]). Transformation rules were suc-
cessfully described in OCL, but also in other formal notations (e.g., Object-Z, B, Maude).

Similarly to program transformation we can distinguish two general categories of model
transformation: translation and rephrasing [24], also called as mapping and update [6]. In
the first case, a source model can be transformed into a target model of a different language.
There is usual a direct correspondence between the sub-sets of elements from both models.
In the later case, a model is changed in some way producing a new target model. The appli-
cation of both approaches will be discussed in the paper.

3. GENERIC FRAMEWORK FOR TRACEABILITY IN
OBJECT_ORIENTED PROJECTS

3.1 Traceability Concepts

A notion of traceability can be in general understood as a directed relationship between
source and target entities. The relations can be specified for any artifacts created within a
software development process (from requirements, trough models and test cases, to the
code), or more specifically for selected elements of the process. An overview of traceability
issues in the software development can be found in [18].

The framework discussed in this paper deals not with the whole software life cycle, but
the traceability is limited to the relations within an object-oriented design. It is based on the
traceability concepts of Dependency Areas [7-9]. In general, it considers an object-oriented
project described at different levels of abstraction. For a given project and an initial element
it extracts a subset of the mostly related elements and identifies relations between them.

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 33

This extraction process can be ruled by different traceability strategies. They determine, for
example, kinds of relations between elements that are considered as "the mostly related". A
traceability strategy is defined by a set of traceability rules.

The concepts of Dependency Areas were developed in the context of UML language,
especially taking into account incomplete models. However the idea can be applied for
different subsets of UML, or different models using object-oriented paradigm.

Traceability analysis is defined as a transformation that takes as an input a vector con-
sisting of the following elements: Project - P, InitialElement - IE� P and TraceabilityStrat-
egy - R. Result of the transformation is DependencyArea - DA � P.

{P, IE , R} → {DA}

It should be noted that there are other research issues dealing with traceability and model
transformation that should not be confused with the approach discussed in this paper. Trace-
ability is supported in QVT where instances of trace classes store the record of transforma-
tions. However the presented approach is not about traceability within transformation proc-
ess, but vice versa, about usage of transformations in development of a framework for rec-
ognition and elicitation of traceability relations.

In [4] transformations between models, and between models and code are realized using
QVT. Artifacts maybe transformed in other artifacts, using some kind of transformation
process available (fully automatic, assisted or manual) and traces are maintained when a
transformation occurs. Keeping the coherence between the artifacts of the system also after
transformation activities is the main goal of the presented framework.

The solution described in [27] is also about traceability within Model Driven Develop-
ment (MDD), but not about application of MDD. Generated traces provide information that
can be further used in transformation between models - the problem is, therefore, opposite
to presented here. In [28] the set of services: trace model management, trace creation, trace
use and trace monitoring are discussed. The services could support any kinds of artifacts
and relations in a heterogeneous MDD environment. However the solution has not yet been
prototyped or evaluated.

3.2 Framework Requirements

The framework is devoted to traceability in software designs. Its goal is discovering trace-
ability relationships in a given object-oriented model according to a given traceability strat-
egy in an automatic way. After analysis of the software development process in small com-
panies, the following needs were recognized:

- the framework should be able to cope with UML notation,
- the framework could be extended also for other notations and support traceability in

projects specified with these notations,
- the framework should be adaptable for new UML meta-models
- the logic of traceability process should be defined using a separate layer of user inter-

face.
The framework supports traceability in object-oriented designs identifying dependency
areas. The framework was intended to be generic and highly flexible. The configurability of
the framework is based on multi-tier architecture, state-machine theory, scripting languages
provided to end-users and plug-in mechanisms. An object-oriented model in any notation

IADIS International Journal on Computer Science and Information Systems

 34

can be accepted by the framework. It requires only a pre-processing realized by an appro-
priate input plug-in. It converts any model to an internal form (so-called Project notation).

Traceability analysis is performed on a Project model according to a given subset of
traceability rules. Each rule is defined by a finite state automaton. Automata are interpreted
by an engine of the framework, so-called traceability analyzer. More details about the
framework architecture can be found in [10,31].

The high flexibility of the framework implies different activities that require knowledge
and different levels of interference into the framework. Therefore, we can distinguish three
roles of users. The actors of the framework with their basic use cases are shown in Fig. 3.

Application of the generic framework to practical purposes requires its adaptation. It is a
role of a plug-in developer and a traceability process modeler that prepare the platform to
be used by a model designer. The following analytical and technical tasks should be real-
ized:

• problem recognition and its analysis concerning possibility of solutions with the
traceability analyzer,

• selection of model notation for description of the problem,
• preparation of conversion from the given model notation to the notation accepted

by the traceability analyzer (Project format),
• design of a traceability logic in dependence of the considered problem (selection

among prepared traceability strategies),
• preparation of conversion of a dependency area from the form given by the trace-

ability analyzer to a suitable output form (if required).

Figure 3. Actors and use cases of the framework

3.3 Framework Structure and Processes

The general process realized within the framework is shown in Fig. 4. In order to satisfy the
flexibility requirements of the framework we used model transformation approaches. In the
process supported by the framework we can distinguish three main points, where model
transformation can be applied:

1. input transformation: from an object-oriented model to the model in the internal
(Project) notation,

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 35

2. traceability transformation: from a Project model with a given initial element to
the resulting Dependency Area,

3. output transformation: from a Dependency Area to a resulting model in a de-
sired notation.

In general, the input and output transformations can be classified as model translations
(mapping); more precisely model migrations, because a model is transformed to another one
at the same level of abstraction [24]. The later case, i.e., the traceability transformation, is
an example of model rephrasing (update), and within this category a kind of model adapta-
tion. The result of traceability analysis can be described by the same model notation, but the
model is changed in order to reveal new features.

Figure 4. Realization of traceability process

An exemplary instance of the framework was implemented. It handles selected parts of
the UML metamodel and its traceability. Models can be serialized as Extensible Markup
Language (XML) using the XML Metadata Interchange (XMI) [23].

Input transformation was realized using QVT approach and existing, supporting it tools
(Sec. 4.2). Output transformation (Sec. 4.3) is analogous to the input one. The main, trace-
ability transformation follows the described concepts, but it was performed by the dedicated
traceability analyzer (Sec. 4.1). It transformed models according to the traceability rules
defined as the specialized automata. Therefore, the principle of separation between trace-
ability logic and its execution was preserved.

The architecture of the framework consists of four layers. The layer of Rule Processing
is responsible for traceability transformation (Sec. 4.1). It uses project and traceability rules
delivered by other layers. The Input/Output layer comprises three components: one - an
interface for converting a project to a form suitable to the RuleProcessing layer, second - an

XMI

Taceability
rules

Dependency
area

Traceability
analysis

Transformation to metamodel
Project (plugins)

XMI

IADIS International Journal on Computer Science and Information Systems

 36

interface for serializing of generated dependency area. The third component delivers trace-
ability rules from a given XML file. Next layer is a plug-in layer. It includes implementation
of the interfaces from the Input/Output layer. The final, Data layer comprises XML files
with traceability rules and documents with input project and output results.

4. APPLICATION OF MODEL TRANSFORMATION IN THE
FRAMEWORK

This section describes transformation solutions used in the framework. All of them are con-
sistent with the concepts illustrated in Fig. 2.

4.1 Transformation Process of Traceability Analyzer

Internal form of an object-oriented project is described by the metamodel Project. Traceabil-
ity rules are designed to operate on any model consistent with the Project metamodel. It is a
general form to which models of specific types can be transformed.

A project (class Project) consists of many elements (class ProjectElement) (Fig. 5). Any
element of a project can have any number of annotations (class LinkAnnotation) referring to
traceability process. Annotations define a set of other elements related in the project, speci-
fying their identifiers, types or names.

Such a project can be understood by the executor of traceability rules. According to the
interpretation of MDA transformation, any instance of metamodel Project should be trans-
formed to a dependency model. This model is an instance of the metamodel of Dependency
Area (Fig.6). It is a resulting metamodel of the traceability process.

A dependency area aggregates a set of area members. Each member is a specialization of
an element of the Project. An area member can have a number of links (class Link) to other
elements of the dependency area. Links can have their priorities and types, defined accord-
ing to performed traceability rules.

LinkAnnotation
targetType
targetName
targetId

ProjectElement
type
name
id

0..n1 0..n1
Project

0..n0..n

+initialElement

+currentElement

Figure 5. The core of the Project metamodel

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 37

ProjectElement

DependencyArea
Link
priority
type

AreaMember
1..n1..n 0..n0..n

+target

Figure 6. The core of the Dependency Area metamodel

Traceability rules are specified using automata approach. Each rule is a separate, finite
state automaton. A status of a rule execution is stored in the nodes of automata. Transitions
between nodes are annotated with actions and conditions. An action can be performed in a
given state only if the appropriate condition is satisfied. Actions and conditions are speci-
fied in a scripting language. In the implementation we used JavaScript language. The de-
tailed description of the syntax of traceability rules is beyond the scope of this paper [31].

The automata approach is very flexible allowing specification of different transforma-
tion rules, including different traceability policies. On the other hand, the transformation can
be realized by a simple rule executor, because the entire logic is stored in the rules. The rule
executor executes a set of rules for any project element that was assigned to a dependency
area. All rules are ordered according to their priorities and executed in the defined order. If
two or more rules have the same priority the order of their execution is random. Elements
assigned to a dependency area are considered by the executor in the order of their addition.
The first one is the initial element indicated in the input project.

Before executing a single rule, its precondition is checked. If it is satisfied, the initial
node of the rule is considered. In case a node has more than one outgoing transitions, they
are ordered according to edge priorities. If a condition of a selected transition is satisfied,
the transition is followed and its action performed. All nodes of the rule accessible from its
initial node are visited during the rule execution.

In the result of the transformation process, the whole set of rules is executed for any pro-
ject element assigned to the dependency area. Any element is added only once to the result-
ing dependency area. If an action specifies assignment of an already existing element, only
additional references between elements are added in the output dependency model.

4.2 Transformation Process of Input Models

According to the assumptions of the framework, an input model can be specified in any
form that can be transformed to an internal form of the Project metamodel. The transforma-
tion of the input model can be realized by an input plug-in. The idea will be explained on an
example of a subset of UML.

General approach corresponds to that shown in Fig. 2. An input UML model can com-
prise any elements, but only elements interpreted by transformation rules in the input trans-
formation process will be further handled by the traceability analyzer. We assumed, that an
initial element is denoted by the stereotype «starting» associated with one element of a
UML input model. Therefore transformation rules have to take into account notion of
stereotypes.

IADIS International Journal on Computer Science and Information Systems

 38

Transformation rules are defined as a set of declarations satisfying the requirements of
the QVT specification. The set of rules describes mapping of elements of a project defined
according to one metamodel, to elements of a project from another metamodel. Transforma-
tion rules from UML to Project are straightforward. Figure 7 illustrates the idea of exem-
plary rules. On the left hand side input elements of UML are given. The set of rules takes
these elements as their inputs. Results of the rules are instances of classes ProjectElement
and LinkAnnotation shown on the right hand side. These instances are connected with ap-
propriate references.

Transformation rules should be described accordingly to a used transformation tool. De-
tailed syntax of the rules accepted by a tool (MdaTranfs [29]) used in the implementation
can be found in [30]. The rules are specified in the XML language. An exemplary rule is
shown in Fig. 8. It transforms metaclass Attribute from UML metamodel to class Projec-
tElement from Project metamodel.

Figure 7. Examples of transformation rules from a UML model to Project elements

Package

Class

Interface

A

B

A B

C

+Attribute

+Operation()

Model
<<Model>>

Model : ProjectElement Model2Classifier :

Package : Packege2Classifier :

Class : ProjectElement

Interface : ProjectElement

Generalization :

Association :

Attribute : ProjectElement

Operation : ProjectElement

Feature :

r1: outerElements

r4: interface

r3: class

r2: innerElements

r5: generalization

r8: operation

r7: attribute

r6: association

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 39

<rule name="attribute">
<domain model="uml14" varName="c1" type="Core.Attribute">

<primitiveProperty name="name" varName="n" type="String"/>
<collProperty name="stereotypes" varName="s" type="String"/>

</domain>
<domain model="trace" varName="c2" type="pw.ii.trace.plugin.xmi.project.model.ProjectElement">

<primitiveProperty name="name" varName="n" type="String"/>
<primitiveProperty name="id" initValue="c1.refMofId()" type="String"/>
<primitiveProperty name="starting" type="String"

initValue="(s.contains('starting')?'true':'false')"/>
<primitiveProperty name="type" type="String"

initValue="c1.getClass().getInterfaces()[0].getName()"/>
</domain>

</rule>
Figure 8. A specification of a transformation rule from UML to Project - transformation of an attrib-

ute

The schema of transformation process of an input model is shown in Fig. 9. It consists
of the following steps:

1) A metamodel of the Project is prepared using a CASE tool and exported in the XMI
format.

2) This metamodel is transformed from the UML format to the standard MOF format.
3) A metamodel of UML in the MOF format is delivered.
4) Metamodels of UML and Project are converted from the XMI to JMI standard.
5) Transformation rules are specified in the XML form accepted by the transformation

tool.
6) A UML model, to be analyzed, is prepared in a CASE tool and exported to the XMI

format.
7) The UML model is converted from the XMI format to the JMI standard.
8) The input UML model is transformed to its corresponding Project model, using UML

and Project metamodels, and the appropriate transformation rules.

It should be noted that steps from 1 to 5 should be performed only once for a given input

model notation. They are the tasks of a plug-in developer. Only steps 6-8 are performed by
a model designer each time a new model is analyzed. Step 6 is realized manually - it is a
proper design activity, whereas steps 7 and 8 are completed automatically using the previ-
ously prepared plug-in.

IADIS International Journal on Computer Science and Information Systems

 40

Figure 9. Realization of the input transformation process

A result of the transformation process is the input model described as a Project model in
the XMI format, suitable for the traceability analysis.

In an exemplary implementation of the input plug-in we used the following tools sup-
porting the transformation process:

- UML2MOF - a tool for model conversion from UML to MOF,
- MDR [20] - a library implementing the JMI standard [14] that describes genera-

tion of interfaces for accessing model elements based on the metamodels given in the XMI,
- MdaTranfs [29] - a tool for model transformation based on the QVT approach.

Generation of interfaces (steps 4 and 7) is realized before the models can be read by the
transformation tool. The JMI standard defines also the set of operations that can be per-
formed on the models, e.g., searching according to a type, getting a value, modification of
values, etc.

4.3 Transformation Process of Output Models

The output transformation should present the results delivered by the traceability analyzer in
a form suitable for a user. The internal form of a dependency area model should be con-
verted into an equivalent, legible form. There can be, of course, many different transforma-
tions that satisfy different user demands. Similarly, as for the input transformation, we dis-
cuss the exemplary solution for UML.

The output transformation process (Fig. 10) can have a similar structure as that shown
for the input process. Three types of input data should be prepared for a given output nota-

MdaTransf

Project metamodel

UML2MOF

Project metamodel in MOF

MDR

UML metamodel

Transformation rules (XML)

Input model

Input model expressed in the Project meta-model

CASE tool XML editor

1

2 3

4

5

6

7

8

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 41

tion. If the notation of the output result is UML, three types of input data are metamodel of
Dependency Area, metamodel of UML and output transformation rules (in XML). Instead
of a CASE tool, as in the input transformation (Fig. 9), the traceability analyzer can be
found in the output process. A dependency area generated by the traceability analyzer is the
fourth input of the process.

Figure 10. Realization of the output transformation process

Using the same tools as shown for the input transformation process, we can automati-
cally obtain the dependency area as a UML model. In this case transformation rules specify
transformation from Project metamodel to UML metamodel. They are written in XML ac-
cording to the syntax [30], similarly as in the input transformation process.

Once, having prepared the appropriate metamodels and transformation rules, the whole
output transformation process is transparent to a user. Although a plug-in developer can
modify the metamodels and/or transformation rules and, therefore, adjust the process on
demand.

5. CONCLUSIONS

We have shown how model transformation technology was used in the generic framework.
The framework supports traceability in object-oriented designs. Model transformations

MdaTransf

Dependency Area metamodel

UML2MOF

Dependency Area metamodel in MOF

MDR

UML metamodel

Transformation rules (XML)

Model in
Dependency Area
 metamodel

Output model expressed in UML metamodel (XMI)

Traceability analizer XML editor

1

2 3

4

5

6

7

8

IADIS International Journal on Computer Science and Information Systems

 42

assisted to attain the important advantages of the framework i.e., its flexibility, independ-
ence of the notation of an input model, separation of the traceability logic from the execu-
tion engine, and possibility of the simple evolution of the traceability strategy. However, in
order to use this technology, it was necessary to provide specifications of the appropriate
metamodels and prepare definitions of required transformation rules. In both cases of lan-
guages used for the transformation descriptions, the QVT and the automata-based approach,
preparation of the transformation rules was very laborious. It was the price of the achieved
universal solution.

Further development of the framework should deal with plug-ins for other UML subsets
or specialized meta-models. Evaluation of different traceability strategies will require more
experiments with different sets of traceability rules. In the further evolution of the frame-
work we can benefit from the model transformations applied in it.

REFERENCES

1. Arujo, J. et al., 2002. Integration and transformation of UML models, Proceedings of ECCOP
Workshops. LNCS Vol. 254, Springer Berlin Heidelberg, pp.184-191.

2. Balogh A., Varro D., 2006. Advanced model transformation language constructs in the VIATRA2
framework. In Proceedings of the ACM symposium on Applied Computing (SAC'06). New York,
NY, USA, pp. 1280-1287.

3. Buttner, F., Bauerdic, H., 2006. Realizing UML Model Transformations with USE. Proceedings
of UML/MoDels Workshop on OCL. Genova, Italy, pp. 96-110.

4. Costa M., da Silva A. R., 2007. RT-MDD Framework - A Practical Approach. In Proceedings of
ECMDA Traceability Workshop. Haifa, Israel, pp. 17-26.

5. Czarnecki, K., Helsen, S., 2006. Feature-based Survey of Model Transformation Approaches. IBM
System Journal, Vol. 45, No 3, pp. 621-645.

6. Czarnecki, K., Helsen, S., 2003. Classification of Model Transformation Approaches. In Proceed-
ings of the 2nd Workshop on Generative Techniques in the Context of Model Driven Architecture
(co-located with OOPSLA'03)

7. Derezińska, A., Bluemke, I., 2005. A Framework for Identification of Dependency Areas in UML
Designs, Proc. of IASTED Conf. on Software Engineering and Application, SEA'05, Phoenix, Ari-
zona, USA, Acta Press, pp. 177-182.

8. Derezińska, A., 2006. Specification of Dependency Areas in UML Designs, Annales UMCS In-
formatica AI 4, Vol. 4, pp. 72-85.

9. Derezińska, A., 2004. Reasoning about Traceability in Imperfect UML Projects. Foundations of
Computing and Decision Sciences.Vol. 29, No. 1, pp. 43-58.

10. Derezińska, A., Zawłocki, J., 2007. Generic Framework for Automatic Traceability in Object-
Oriented Designs. Annals of Gdansk University of Technology Faculty of ETI, No 5, pp. 291-298
(in polish).

11. Egyed, A., 2004. Consistent Adaptation and Evolution of Class Diagrams during Refinement,
Proceedings of 7th Inter. Conf. on Fundamental Approaches to Software Engineering (FASE).
Barcelona, Spain, pp. 37-53.

12. Fondement F., Silaghi R., 2004. Defining Model Driven Engineering Processes, Proceedings of
3rd Workshop in Software Model Engineering (Wisme'04). Lisbon, Portugal.

13. Frankel, D. S., 2003. Model Driven Architecture: Appling MDA to enterprise computing, Wiley
Press, Hoboken, NJ, USA.

TOWARDS MODEL TRANSFORMATION - A CASE STUDY OF GENERIC FRAMEWORK FOR
TRACEABILITY IN OBJECT-ORIENTED DESIGNS

 43

14. JMI standard, http://java.sun.com/products/jmi/
15. Jouault F., Kurtev I., 2005. Transforming Models with the ATL. In Proccedings of the Model

Transformation in Practice Workshop at MoDELS 05. Montego Bay, Jamaica, LNCS Vol. 3844,
pp. 128-138.

16. Kolovos D.S. at al., 2007.Update Transformations in the Small with the Epsilon Wizard Lan-
guage., In Journal of Object Technology. Vol. 6, No. 9, Special Issue TOOLS EUROPE Oct. 07,
pp.53-69.

17. Letelier, P., 2002. A Framework for Requirements Traceability in UML-based Projects. Proceed-
ings of 1st Int. Workshop on Traceability in Emerging Forms of Software Engineering. (co-located
with IEEE Conf. on ASE), Sept. 28, Edinburg, UK.

18. Maeder P. et al. 2006. Traceability for managing evolutionary change. In Proceedings of 15th
SEDE (ICSA). Los Angeles, USA, pp.1-8.

19. Matinlassi M., 2005. Quality-Driven Software Architecture Model Transformation. In Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture (WICSA'05). Pittsburgh,
Pennsylvania, USA, pp. 199-200.

20. MDR library, http://mdr.netbeans.org/
21. Object Management Group, 2003. MDA Guide, Ver. 1.0.1, OMG Document omg/2003-06-01.
22. Object Management Group, 2005. MOF QVT Final Adopted Specification, OMG Specifications

ptc/05-11-01.
23. Object Management Group, 2005. MOF 2.0/XMI Mapping Specification, Ver. 2.1, OMG Docu-

ment formal/05-09-01.
24. Sendall S. at al., 2004. Understanding Model Transformation by Classification and Formalization,

Proceedings of Workshop on Software Transformation Systems (part of 3rd International Confer-
ence on Generative Programming and Component Engineering). Vancouver, Canada.

25. Sendall S., Kozaczynski W., 2003. Model Transformation - Heart and Soul of Model-Driven
Development. In IEEE Software, Vol. 20, No. 5, pp. 42-45.

26. Spanoudakis, G. et al., 2004. Rule-based Generation of Requirements Traceability Relations,
Journal on Systems and Software, Vol. 72, No. 2, pp. 105–127.

27. Vanhooff B. et al., 2007. Traceability as Input for Model Transformations. In Proceedings of
ECMDA Traceability Workshop. Haifa, Israel, pp. 37-46.

28. Walderhaug S., et al. 2006. Towards a Generic Solution for Traceability in MDD. In Proceedings
of ECMDA Traceability Workshop. Bilbao, Spain.

29. West Team, MDA - Transf User Guide, http://www.lifl.fr/west/modtransf/
30. West Team, MDATrans Syntax, http://www.lifl.fr/~dumoulin/modTransf/doc/
31. Zawłocki, J., 2006. A Framework for Traceability Process in Object-Oriented Models. Master

Thesis, Institute of Computer Science, Warsaw University of Technology (in polish)

