
IADIS International Journal on Computer Science and Information Systems
Vol. 3, No. 1, pp. 1-13
ISSN: 1646-3692

 1

MONITORING SERVICES ON ENTERPRISE
SERVICE BUS

Ilona Bluemke, Marcin Warda Institute of Computer Science, Warsaw University of Technol-
ogy, Nowowiejska 15/19, 00-665 Warsaw, Poland

{I.Bluemke}@ii.pw.edu.pl

ABSTRACT

At the Institute of Computer Science Warsaw University of Technology a module for monitoring ser-
vices in Service Oriented Architectures (SOA) was designed and implemented. The module is able to
monitor services on the ESB (Enterprise Service Bus) level even, if the services are executed on differ-
ent servers. The whole context of the flow is provided to the user. The architecture of this module is
briefly presented. This tool was used to measure several parameters in real enterprise integrated architec-
ture e.g.: the effectiveness and the usage of resources in some flows. These experiments are described
and some conclusions are given. The monitoring module may be very useful in the maintenance of
complex SOA systems.

KEWORDS

SOA, quality of service, monitoring, platform integration

1. INTRODUCTION

The definition of Service Oriented Architecture - SOA [4] is following: “An architectural
style whose goal is to achieve loose coupling among interacting software agents. A service is
a unit of work done by a service provider to achieve desired end results for a service con-
sumer. Both provider and consumer are roles played by software agents on behalf of their
owners.” The real power of SOA and Web services becomes apparent when various constitu-
ents are added, removed, replaced, or upgraded without adversely impacting the whole sys-
tem. SOA- and Web services-based solutions allow products from different vendors, running
on different platforms, to work together. Despite attempts to standardize, a typical IT infra-
structure is heterogeneous and it makes the management a very complex task. The problems
of management in SOA architectures is discussed in [5].

IADIS International Journal on Computer Science and Information Systems

 2

With the development of the Service Oriented Architecture (SOA), organizations are able
to compose complex applications from distributed services supported by third party providers.
Under this scenario, large data centers provide services to many customers by sharing avail-
able IT resources. This leads to the efficient use of resources and the reduction of operating
costs. Service providers and their customers often negotiate utility based Service Level
Agreements (SLAs) to determine costs and penalties based on the achieved performance lev-
els.

Service-based approaches are widely used to integrate heterogenous systems. Web ser-
vices allow for the definition of highly dynamic systems where components (services) can be
discovered and quality of service (QoS) parameters negotiated at run-time. This justifies the
need for monitoring service at run-time.

At the Institute of Computer Science Warsaw University of Technology a tool for moni-
toring services in Service Oriented Architectures (SOA) was designed and implemented. This
tool was used in some experiments in real enterprise integrated architecture. These experi-
ments are described and some conclusions are given. The monitoring module differs signifi-
cantly from existing monitoring modules. Our program monitors services on the ESB (Enter-
prise Service Bus) level even, if the services are executed on different servers. Other programs
are able to monitor business processes eg. Optimize for Process in webMethods or do not
provide sufficient information if the execution is distributed on several servers. The monitor-
ing module may be very useful in the maintenance of complex SOA systems.

The remainder of the paper is organized as follows. Section 2 describes some literature
approaches. Section 3 introduces the overall system architecture and presents some implemen-
tations details. The experiments with the monitoring program are presented in Section 4. Sec-
tion 5 contains some conclusions.

2. RELATED WORK

In [1] is presented how to monitor dynamic service compositions with respect to contracts
expressed via assertions on services. Dynamic compositions are represented as BPEL (Busi-
ness Process Execution Language) processes which can be monitored at run-time to check
whether individual services comply with their contracts. Monitors can be automatically de-
fined as additional services and linked to the service composition. Two alternative implemen-
tations of the monitoring approach: one based on late-binding and reflection and the other
based on a standard assertion system are described.

The paper [6] proposes a framework for monitoring the compliance of systems composed
of web-services with requirements set for them. This framework assumes systems composed
of web-services that are coordinated by a service composition process expressed in
BPEL4WS (Business Process Execution Language for Web Services) and uses event calculus
to specify the properties to be monitored. The monitorable properties may include behavioural
properties of a system which are automatically extracted from the specification of its composi-
tion process in BPEL4WS and/or assumptions that system providers can specify in terms of
events extracted from this specification.

In [7] the quality model suitable for capturing and reasoning about quality aspects of mul-
tichannel information systems is presented. In particular, the model enables a clear separation
of modeling aspects of services, networks, and devices. Further, it embeds rules enabling the

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 3

evaluation of end-to-end quality, which can be used to select services according to the actual
quality perceived by users. In [7] a long list of references to papers concerning different as-
pects of quality of services can also be found.

3. MONITORING MODULE

However there are some monitoring programs (some of them mentioned in section 2), we
decided to design and implement a monitoring module for integration product webMethods
[10]. Existing monitoring modules are able to monitor business processes e.g. Optimize for
Process in webMethods. The implemented module is able to monitor services executed on
different servers on the ESB (Enterprise Service Bus) level. Other programs monitoring ESB,
are dedicated to only one server or do not provide sufficient information if the execution is
distributed on several servers. Our goal was to monitor ESB services executed on distributed
servers and to provide full context of the flow. Such information may be very useful for ad-
ministrators of integrated systems.

Figure 1. The architecture of monitoring module

The module for monitoring services on an integration platform contains processes respon-
sible for:

1. collecting information concerning service calls based on a „pre/post invoke” and
storing it in memory of a local server (log queue),

IADIS International Journal on Computer Science and Information Systems

 4

2. elaborating the log queue: store logs in a file on local server, write them to the data
base (using connection of the local server or send them to the central service which
will write logs to the data base),

3. evaluating logs in data base: statistics calculation, deleting ancient logs.
The basics ideas of a monitoring module are presented in Fig.1. The implementation details of
this module are described in [9, 2].

3.1 Information collection

To collect the information concerning service calls a mechanism provided with the integration
server i.e. custom „pre/post invoke” is used. Custom classes responsible for the call of web
service can be added to store appropriate data in the memory of local server. The data are
stored synchronically to the service call so the time to execute the service is increased by time
necessary for writing data. We are convinced that this solution is more efficient than asyn-
chronical data writes. For the asynchronicall writes a copy of objects and data must be made.
Some experiments show that this process needs several milliseconds. The collected data are
stored in object of the mwr.service.performanceMonitor.beans.AuditData
class which is inserted into the log queue on the local server. To be able to decompose the
execution time of a flow into the execution times of several services the whole context of the
call must be stored. This context is also passed by the pre-invoke mechanism which is able to
detect a service of an external server e.g. sending a message to Broker or a SOAP (Simple
Object Access Protocol) call. This context contains following information:

• name of a user which started the flow,
• identifier of the flow,
• name of the service in the top level,
• identifier of previous server,
• transaction identifier.

Transaction identifiers can be used to trace the flow on different physical servers. The user
name and the name of the top level service are used to set the log filters.

3.2 Information storing

On the local server a queue of objects containing data describing services is kept (fig.1).
Writes to this queue can be made from different threads concurrently so they are synchro-
nized. When the length of queue reaches a defined level a special service responsible for writ-
ing to the data base is called. This service is operating asynchronically. The queue parameters
e.g. maximal length (maxQueueSize), the number of threads servicing logs (maxLog-
gingThreads) and others can be configured. In case of problems with the access to logs
data base the queue may become very long, even use all server memory. If the maximal
queue length (maxQueueSize) is reached (which may be caused with inability to write logs)
the newest logs are covering the oldest ones, some logs will be missed but server will be oper-
able. The monitoring module should not disturb in normal operation of servers.

Writing many logs to the data base can slow down the execution of other flows on this
server. Direct writes from servers to data base need connections between server and data base.
Connections with many servers on the integration platform may be a problem for the data

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 5

base. We decided to built a dedicated service on the integrated server (webService) responsi-
ble for all writes to the log data base. Logs writes are implemented in two services. The first
one is sending logs to integration broker and the second one is extracting these logs and send-
ing them to the data base. The first service manages a log queue in the integration broker and
enables normal operation, even if there area some efficiency problems with the access to the
data base. The service responsible for physical writes to the log data base should be installed
on a dedicated server, connected with the integration broker, so writing to the log base will
not obstacle normal platform operation.

4. EXPERIMENTS

The implemented monitoring module was used in several experiments in real SOA environ-
ment. The integration platform was built with 6.1.5. webMethods product [10] and contained:

− webMethods Integration Server,
− webMethods Broker,
− WmJdbcAdapter implementing JDBC protocol and enabling the connections with data

bases in the integrated environment.
The environment contained five logical layers:

1. core-tier – abstract business services layer,
2. adapter-tier - contains adapting services enabling the connections between business ser-

vices and physical resources of integrated systems (e.g. billing systems, client management
system),

3. front-end-tier – covers adapter services provided for clients applications,
4. business-process-tier – layer providing business processes on the platform,
5. admin-tier – administrator server collects information about the availability of platform

elements. This server was also used to write logs from monitoring module.
Admin server was using its own message broker. The integration environment had also con-
figuration and operational data bases. The operational data base was also used to store logs
from the monitoring module. In section 4.1 some technical details of the environment used for
experiments are given. The results of experiments are presented in sections 4.2 - 4.6.

4.1 Environment for experiments

Each logical layer of integration servers had two instances on the server. Servers were work-
ing on 32-bit computers IBM Blade Server dual-core with 4GB RAM operation memory and
operating system RedHat Enterprise Linux v.3. Integration Broker was located on Sun-Fire-
V440 computer working under SunOS 5.9 operating system. Data base (engine Oracle 9i)
was deployed at the same computer. Integrated systems were also using Oracle data bases
(versions 8 or higher).

Calls of services from client were made with SOAP-RPC protocol, API webMethods im-
plemented in Java or HTTP (GET) protocol used for direct transfers of xml files. Resources of
integrated systems were accessible trough PL/SQL statements. In communication the JDBC
adapter was used. The SOAP-RPC protocol was also used in synchronic internal calls be-
tween servers. For asynchronical calls, the message broker was used.

IADIS International Journal on Computer Science and Information Systems

 6

The experiments were made in an real environment of a mobile phone operator. The inte-
grated platform consisted mainly of systems for clients and clients demands managements.
The platform has approximately 300 services and 20 business processes. The analysis were
made for selected, following flows:
1. x.core.serivce:getServiceParamsValues – getting parameters for client’

services (synchronic)
2. x.core.serivce:getAvailServices – getting services available for the client

(synchronic)
3. x.core.service:getActiveServices – getting active services for the client

(synchronic)
4. x.core.om.service:serviceModificationOrder – putting an order for the

modification for client’ service (asynchronic)
5. x.core.infoservice:infoservice – checking resources available for the client

in her/his electronic wallet (synchronic)
6. x.core.contract:getContractData – getting data from the client’ contract (syn-

chronic).
The logs were collected during one week of functional testing of the integrated platform.

The functional testing was caused by new code release for the integrated systems. During
testing the load of the system was significantly lower than normally (only 5% of the normal,
working load). The flows during testing were not evenly distributed and this phenomena can
be seen in the results of experiments. It was not possible, due to the owner constraints, to
monitor normally working platform.

In next sections some analysis of the stored by monitoring module logs are shown. The re-
sults present possible application of the monitoring module. In a short paper not all applica-
tion domains may be presented, more analysis are given in [9]. The performance analysis
should not be made during the functional testing.

The measurements of a flow needs a lot of information e.g. user of the service, path of
business services called during this flow, errors returned by service, time parameters, com-
puters executing services etc. In an integrated environment there are usually many services,
many flows, many users, etc. It can be easily imagined, that the analysis of stored by a moni-
tor data is time consuming and very complex problem.

4.2 Analysis of the flow results

Analysis of the data stored by the monitoring module makes possible to calculate the percent-
age of errors returned from the flows or even from a service being the part of the flow. The
percentage of errors can be calculated for each user calling the flow. Based on this data the
quality of the service (service level) can be calculated. Some errors returned from the flow do
not mean that the service is incorrect e.g. incorrect validation in the flow concerned with
making up an order. A dictionary, containing all errors which can be ignored in the flow, is
necessary for the calculation of the service quality. In figure 2 the percentage of returned
errors in some flows is presented. The flows are following:

1. IVR. x.adapter.ivr:setServiceParams
2. IVR. x.adapter.ivr:getServiceParameters
3. IVR. x.adapter.ivr:infoService
4. SMS. x.adapter.sms:getSmsFromDb

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 7

5. ECARE_WWW.x.adapter.ecare:serviceModificationOrder
6. ECARE_WWW.x.adapter.ecare:getActiveService
7. ECARE_WWW.x.adapter.ecare:getAvailServices
8. ECARE_WWW.x.adapter.ecare:getContractData.

On figure 2 some differences in the percentage of errors can be seen. The best results has
flow setServiceParams (0.4%), the worst – serviceModifcationOrder (1.5%).
The average availability was 98,5% - 99,5%. The information from this diagram can be used
to find low quality flows. These flows are candidates to be improved. Other criteria for choos-
ing a flow for the improvement process are: priority of service, complexity, number of calls of
this service, cost. The diagram (fig.2) contains data collected during the whole testing period.
Summarized data can be used to find trends. Similar data but gathered in short period of time,
may help in finding system bottlenecks.

4.3 Analysis of the flow effectiveness

The stored logs may produce the diagrams showing the effectiveness of flows. The basics
criteria is the time to accomplish the flow. In figure 3 minimal, maximal and average time of
several flows, listed in section 4.2 are presented.

Percentage of failed flows

0 0,002 0,004 0,006 0,008 0,01 0,012 0,014 0,016

flow

percentage

1

2

3

4

5

6

7

8

Figure 2. Percentage of errors in flows

If the execution time is crucial for the client, the execution time of the flow can be the ba-
sis for the calculation of the service quality. The percentage of the execution times lower than
the critical ones, should be compared with values in Service Level Agreement. In fig.3 SMS
user calls (4th flow) are significantly slower than others. SMS calls are asynchronically real-
ized because the execution time is not critical for user.

IADIS International Journal on Computer Science and Information Systems

 8

service performance

0 1000 2000 3000 4000 5000 6000 7000 8000

flow

ms
TIME_MIN TIME_AVG TIME_MAX

1

2

3

4

5

6

7

8

Figure 3. Comparison of effectiveness of flows

4.4 Flows per time unit

The traffic in the integrated system (number of flows realized in a time unit) is very important
for system administrator and manager. The flows in figure 4 are following:
1. x.core.service:getServiceParamsValues
2. x.core.service:getAvailServices
3. x.core.service:getActiveServices
4. x.core.om.service:serviceModificationOrder
5. x.core.infoservice:infoservices
6. x.core.contract:getContractData

In figure 4 the percentage of selected flows in total traffic are shown. Such information
helps in estimation of the cost of maintaining the integrated system for a client.

In figure 5 the time distribution of these flows is shown. These information are very useful
in the estimation of system capacity. System should be able to stand the maximal load (traf-
fic). The data in figure 5 were obtained not during normal service of the systems but during
test period, so the distribution of data is not typical.

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 9

Service calls

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45

service

percentage o f total calls

1

2

3

4

5

6

Figure 4. The percentage of six flows in total traffic

TRX/CHANNEL

0

20

40

60

80

100

120

140

7/0 7/12 8/0 8/12 9/0 9/12 10/0 10/12 11/0 11/12 12/0 12/12 13/0

time (day/ho ur)

tr
x

SM S

IVR

W WW

TOTAL

Figure 5. Traffic in the integrated system in some time period

IADIS International Journal on Computer Science and Information Systems

 10

4.5 Analysis of the platform resources

The administrator of an integrated platform should be provided with information concerning
the utilization of system resources. The information from section 4.4 is insufficient to calcu-
late the number of servers and connections needed for correct systems operation. Important
resources of an integrated platform are the total number of threads executing clients services
and connections to external resources. Too high number of concurrently working threads will
slow down the server or some services will be rejected. If the number of request to external
data bases is higher than the number of connections, services will end with errors. To guaran-
tee the correct platform operation the number of resources needed for the traffic should be
estimated. For such estimations the number of flows and the time to execute them on a server
is necessary.

Normalised resource usage

0,00% 10,00% 20,00% 30,00% 40,00% 50,00% 60,00%

service

percentage of total resource usage

1

2

3

4

5

6

Figure 6. The usage of server resources by selected services

In figure 6 the usage of server resources by selected six services is shown. The names of
these flows are given in section 4.4. From this figure the service using maximal server re-
sources can be identified (6th service). This service is a candidate for optimization. If the exe-
cution time of x.core.contract:getContractData service will be half the current
value, 30% of platform resources will be set free. 30% of resources for a big platform is worth
some optimizing actions. It may be effective to move some data used by this service to a fast,
special data base.

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 11

4.6 Server comparison

In large integration platforms it is very difficult to locate a server with some technical prob-
lems e.g. network connections, low effectiveness. Such server will increase the execution time
of services but the cause of this problem can be hidden for a long time. The data collected by
our monitoring module enables the comparison of servers efficiency. For each service the
name of server executing this service is also stored (section 3.1). With the information stored
in the log data base it is possible to compare the execution time of the same services on differ-
ent servers. Such comparison can be seen in figure 7. If the servers have the same technical
parameters (the case from figure 7) the execution times should be similar. In figure 7 the dif-
ferences can be seen.

Load balancing - server comparison

40,00%

42,00%

44,00%

46,00%

48,00%

50,00%

52,00%

54,00%

56,00%

service

to
ta

l c
al

ls
 p

er
ce

nt
ag

e

testeai-billing1-slb:6655 testeai-billing2-slb:6655

Figure 7. The comparison of servers executing the same service

When we are comparing the efficiency of servers these servers should work with the same
load. Even with load balancing the load of servers is not the same and the usage of servers
resources is also different. For the two servers compared in figure 7 the load differences were
almost 8%. This value can be used to normalise measured values. The normalised perform-
ance of servers is presented in figure 8.

IADIS International Journal on Computer Science and Information Systems

 12

Normalized Performance - server compare

44,00%

45,00%

46,00%

47,00%

48,00%

49,00%

50,00%

51,00%

52,00%

53,00%

54,00%

x.core.adapter.crm:getContractDat

x.core.adapter.crm.db:findContractByMsisd

x.core.adapter.crm.db:getContractInf

x.core.adapter.billing:getContractData

x.core.adapter.billing.db:getContractData

service

no
rm

al
iz

ed
 p

er
fo

rm
an

ce

testeai-billing1-slb:6655 testeai-billing2-slb:6655

Figure 8. Comparison of servers

5. CONCLUSIONS

The quality of services on an integrated platform is influenced by many factors: e.g. the physi-
cal and logical architectures, integrated systems, implementation of flows, technology, etc.
Finding bottlenecks or services of low quality is a very difficult task. The monitoring module
implemented at the Institute of Computer Science Warsaw University of Technology de-
scribed in section 3 and in [9, 2] can be very helpful. This module is dedicated to webMethods
[10] environment. The idea of monitoring services in SOA architectures, implemented in this
tool, is general so the design of this tool can be easily implemented for others SOA integrat-
ing products. The data collected by monitoring module can be used by administrators and
managers to improve the quality of service on the integrated platform. Examples of such
analysis are given in sections 4.2 – 4.6. The monitoring module may be also used to detect
bottlenecks of the integrated systems. Such measurements should be performed under normal,
typical load of the system (not during functional testing as described in this paper). The mod-
ule may be used to calculate the quality of services, the utilization of system resources, to
observe the traffic on the integrated platform.

The module is able to monitor services on the ESB (Enterprise Service Bus) level even, if
the services are executed on different servers. The whole context of the flow is provided to the
user. Such information may be very useful in the maintenance of integrated systems. After
changes in some services, the monitoring module will collect data enabling the administrator
to tune the system, to find services which should be optimized. The majority of existing moni-

MONITORING SERVICES ON ENTERPRISE SERVICE BUS

 13

toring modules is able to monitor business processes e.g. Optimize for Process in webMeth-
ods. Other programs monitoring ESB, are dedicated to only one server or do not provide suf-
ficient information if the execution is distributed on several servers. The overhead of the
monitoring module was measured [9]. For a flow consisting of 100 services the overhead was
12 to 31 msec. This is an acceptable value and lower than the overhead caused by other inte-
gration software.

Further work will concentrate on integration the monitoring tool with other tools enabling
the generation of reports e.g. BMC Patrol [3], or HP OpenView [8].

REFERENCES

1. Baresi L. et al, 2004. Smart Monitors for Composed Services. ACM ICSOC’04. New York, USA,
pp. 193-202.

2. Bluemke I. and Warda M., 2007. Monitoring module (in polish). Proceedings of Second Polish
Conference on Data Processing Technology. Poznań, Poland, pp. 534-545.

3. BMC Patrol, 2007. http://www.bmc.com/ .
4. He H., 2003. What is service-oriented architecture? in http://webservices.xml.com/
5. Kumar P., 2005. Web Services and IT management, ACM QUEUE, July/August, pp. 44-49.
6. Mahbud K., and Spanoudakis G., 2004. A Framework for Requirements Monitoring of Service

Based Systems. ICSOC’04, November 15–19, New York, USA, pp. 84-93.
7. Marchetti C., et al, 2004. Quality Model for Multichannel Adaptive Information Systems.

WWW2004, New York, USA, ACM 1581139128/04/0005, pp. 48-54.
8. OpenView 2007. http://h20229.www2.hp.com/ .
9. Warda M., 2006. Architectures for Enterprise Application Integration. MSC. Diploma (in polish),

Institute of Computer Science Warsaw University of Technology.
10. webMethods, 2007. http://www.webmethods.com .

