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ABSTRACT 

Image-Space Sheet-Buffered Splatting is a popular high quality volume-rendering technique specially 
suitable for zoomed views of the data and point-based surface models, that projects the voxels in slabs 
perpendicular to the viewing direction. Recently, a GPU design of this method has been proposed that 
considerably accelerates the rendering stage. However, the bottleneck of the method is the computation 
of the buckets, i.e the structure handling the voxels to be rendered in each slab. This stage of the method 
is done on the CPU. In this paper, we propose a new design of the method that creates and manages the 
buckets on the GPU. The proposed method is more than three  times faster than the previous ones. 
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1. INTRODUCTION 

Splatting was originally proposed as a feed-forward algorithm for voxel-based volume 
datasets [17]. Recently, it has gained popularity in being applied to point-based surface models 
[1]. It considers the volume as an array of 3D overlapping kernels weighted by the voxels 
property values. The algorithm gains its speed by exploiting the similarity of the kernel’s 
projection. In orthographic views, all the kernels have the same projection or footprint. Thus, 
the footprint can be computed once, in a preprocess and used for the projection of all the 
voxels. In perspective views, the footprint must be distorted according to the distance of the 
voxels to the observer [19]. The Image-Space Sheet-Buffer Splatting (ISSB Splatting) [12] 
projects the voxels in sheet-buffers parallel to the image plane and composites each sheet with 
the image buffer.  

Splatting can be speed up with software-based accelerations and by using hardware 
features. Most of the research in hardware-based accelerations focuses on the kernels 
projection [7], [16] and on enhancing sheet composition [18]. Neophitou and Mueller [14] 
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increase the voxel/pixel overdraw and avoid running fragment programs on empty or opaque 
pixels. Despite these improvements, the memory transfer of the data to the GPU is still the 
bottleneck of splatting.  

The goal of this paper is to propose a new GPU-based ISSB Splatting that processes all the 
data directly on the GPU and thus, avoids the overhead of memory transfer between CPU and 
GPU. The proposed method can benefit from existing hardware-based improvements, and, in 
addition to them, it uses General Purpose computation using GPU (GPGPU) strategies to 
manage data on the GPU. 

2. PREVIOUS WORK 

ISSB Splatting processes the volume by slabs parallel to the image plane [13] (see Figure 1). 
Each slab is associated to a data structure called bucket that holds the index of all the voxels 
that intersect the slab. Buckets are filled for each new camera position by transforming the 
relevant voxels with the viewing matrix. Slabs are then processed in front-to-back or back-to-
front order. All the voxels of a slab are projected onto a sheet buffer according to a pre-
integrated kernel slice, and the sheet buffer is composed with the image buffer. No sorting is 
required inside the buckets since splats of a buckets are simply added in the corresponding 
sheet buffer. 

 

Figure 1.Image-Space Sheet-Buffered (ISSB) Splatting Pipeline. 

In a recent paper, Neophitou and Mueller [14] have proposed an implementation of this 
method that keeps the buckets construction step on the CPU and uses the GPU in the second 
stage of the pipeline. Their approach brings several contributions. First, instead of rasterizing a 
textured polygon per splat, they use the Point Sprites extension that requires sending only one 
vertex per splat. They also use the Vertex Arrays extension to pack the points of the slices. 
Next, they use the four color channels at a time in order to process four slices in parallel. Since 
they can only store the density values in each channel, they are not able to use pre-computed 
object-space gradient vectors. Therefore, they use post-shading that computes the gradients in 
image-space by central difference of the pixels. In addition, they use the early z-rejection test 
with two purposes: to avoid splatting on pixels of the slice that are already opaque (early splat 
elimination), and to restrict shading and compositing only to the pixels of a slice that have 
been touched during splatting. 

The current limitation of this implementation is, as reported by the authors themselves, the 
memory transfer between the CPU buckets and GPU slices. In a recent paper [4], the same 
authors propose to store the bucket’s voxels in a texture in order to speed-up data transfer 
between CPU and GPU. However, this is only a small acceleration, since the textures must be 
recomputed each time the camera moves. Keeping data inside the graphics board have been 
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investigated for other splatting strategies, that do not process voxels by slabs and, thus, do not 
have buckets [3] [16].  

The memory transfer between CPU and GPU has also been addressed in the context of 
computer games. For particle systems, Latta et al. [11] [9] have proposed to store the positions 
and velocities of the particles in floating point textures. In order to update them, they use a 
pair of textures for both parameters and a double buffering technique to switch between 
textures. In order to perform alpha-blending, particles are sorted on the GPU with the Odd-
Even Merge Sort distributed over 20 to 50 frames. This progressively sorting approach gives 
visually acceptable images if enough frame-to-frame coherence exists. Kipfer et al. [8] 
designed the Uberflow particle system that exploits the Super Buffers Open GL extension. 
They propose an improvement of the GPU implementation of the Bitonic Merge Sort designed 
by Buck and Purcell [2]. Krüger et al. [10] re-use this technique for the visualization of 3D 
flows with transparent point sprites. 

Our work is inspired on Neophitou and Mueller’s work [14] and on the rendering particle 
systems approaches described above. We propose an ISSB Splatting that makes an extensive 
use of the GPU computational resources and computes the buckets on the GPU. 

3. IMAGE-SPACE SHEET-BUFFERED (ISSB) SPLATTING ON 
THE GPU 

3.1 Overview 

Figure 2 illustrates the proposed pipeline. We start loading the selected voxels on a 2D texture 
(Voxels Texture) and next, we transform all the voxels according to the viewing system. The 
result is stored in the View Transformed Voxels Texture. The problem that arises then is how 
to compute the buckets. Scattering, i.e. random writes to specified addresses, is not efficient 
on GPUs. Fragment shaders cannot change the writing texture position. Thus, it is not feasible 
to process sequentially the voxels and insert them in texture buckets according to their z-value, 
as it is done in the CPU pipeline illustrated in Figure 1. What we do instead is depth sorting 
the transformed voxels. The resulting texture (Z-Sorted Voxels Texture) is an implicit 
representation of the buckets since, as indicated in the right part of Figure 3, slabs correspond 
to overlapping sorted subsequences of voxels in the texture. In order to process sequentially 
the slabs, we need to know the size of each of these subsequences. We define the bucket of a 
slab as the subset of the depth sorted voxels of the texture whose center falls inside the slab 
(see Figure 3 left). Therefore, each voxel belongs to only one of these buckets, although it is 
splatted for all the slabs it intersects. 
 

Figure 2. CPU-based Image-Space Sheet-Buffered (ISSB) Splatting Pipeline. 
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Figure 3.Left: each bucket of a slab has the subset of the depth sorted voxels whose centre falls inside the 
slab. Bucketi  has only voxels 1 and 3. For the rendering stage voxels of bucketi will be taken into 

account in slabi−2 to slabi+2. Right:    voxels of a slab in the Z-Sorted Voxels Texture. Consecutive slabs 
correspond to overlapping subsequences of the texture. 

The next stage after depth sorting the texture is the bucket size computation. It gives as a 
result a texture containing the position of the last voxel of each bucket (Buckets Texture). 
After that, the  slabs are processed one after the other. The radius of the voxels kernel 
determines the number of previous and following buckets that affect a slab in addition to its 
own bucket.  

If the camera is static and the transfer function changes, only the render stage needs to be 
redone. When the camera moves, the pipeline is executed starting by computing the View 
Transformed Voxels Texture. In these two cases, the Voxels Texture does not change and it is 
kept in the GPU. If the selection pre-processing is modified, the Voxels Texture should be 
recomputed. Alternatively, we can load all the non-empty voxels on the GPU in order to avoid 
the CPU-GPU transfer. In this case, the selection is done using an opacity transfer function. If 
the number of non-empty voxels is large, the texture memory may be insufficient to load them 
all. In order to solve this problem, we have developed a bricking strategy based on the use of 
multiple textures. 

3.2 Data structures 

As shown in Figure 2, the basic data structures of our method are the 2D textures that store the 
voxels throughout the different steps of the pipeline. Each voxel is encoded in a texel position, 
storing its coordinates in the RGB channels and its value in the alpha channel (< x, y, z, v >). 
In order to store the voxel coordinates with the maximum precision, we use the FP32RGBA 
format that provides 32 bits floating point for each channel. The texture loading uses the PCI 
express memory interface in asynchronous mode. 

Textures are used together with the Frame Buffer Objects extension (FBO) in order 
to apply the ping-pong technique. This technique is used in recursive processes that need to re-
use the last computed values in the next stage of recursion. It uses two textures attached to an 
FBO by colour attachment. When a stage begins, the texture used as source in the previous 
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stage is set as the target, and the previous target texture is the current source texture. 
Specifically, we use the ping-pong technique in the sorting stage to compute the Z-Sorted 
Voxels Texture.  

 
In addition to FBO, we use Vertex Buffer Objects (VBO) with the Render to Vertex 

Buffer (R2VB) technique that lets us create VBO using the values of a 2D texture. We use the 
Pixel Buffer Object (PBO) extension to load the 2D texture values onto the VBO. This keeps 
all the data flow inside the GPU. We use R2VB in the Buckets Texture construction and for 
the rendering stage. 

3.3 Viewing Transform (VT) 

This stage computes the View Transformed Voxels Texture from the Voxels Texture. We use a 
fragment shader that transforms the coordinates of the voxels stored as RGB values in the 
source texels according to the viewing matrix. For each texel, the fragment shader stores the 
2D raster coordinates of the voxel’s projection in the R and G channel of the target texture, its 
depth value in the B channel and the voxel property value in the alpha channel (< i, j, b, v >). 

3.4 GPGPU sorting (SORT) 

The challenge of designing GPGPU sorting algorithms is to exploit as best as possible the 
parallel nature of the GPU architecture. Data-driven sorting algorithms such as Quicksort, that 
are the fastest on CPU, are not suitable for GPU implementation. This is why existing GPU 
sorting methods, basically Odd-Even Merge Sort and Bitonic Sort, are network sorting data-
independent strategies. Current GPU implementations of Bitonic Sort [6] are much faster than 
Odd-Even Merge. We have used Govindaraju et al.’s [5] GPU implementation of the bitonic 
sort. It sorts an array of   < key, value > pairs. It uses the Multiple Render Target (MRT) 
extension to efficiently store the keys and the values. One render target stores the keys and the 
other the values, and a one-to-one correspondence exists between the two textures. This allows 
us keeping four instances in one RGBA texel.  

The method takes as input a CPU array. In our case, the view transformed voxels to sort 
are already in the GPU. The sorting key is the depth voxel value <b>. We use a fragment 
shader on the View Transformed Voxels Texture that fills the render targets with the <b> texel 
values as the key and a voxel index in the texture as the value. Once sorting is finished, 
another fragment shader fills the Z-Sorted Voxels Texture from the sorted render targets. 

3.5 Bucket size computation (BUCKETS) 

In this stage of the pipeline, we compute on the GPU the Buckets Texture that stores the 
position of the last voxel of each bucket (bucket boundary voxel). This texture cannot be 
computed directly from the Z-Sorted Voxels Texture using fragment shaders because there is 
no relationship between these two textures. The Z-Sorted Voxels Texture contains all the 
selected voxels, whereas the Buckets Texture contains only one voxel per bucket. Therefore, 
we need a vertex shader capable of writing at specified positions on a texture. However, 
determining if a voxel is bucket boundary requires to compute its bucket and compare it to the 
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bucket of the following voxel in the Z-Sorted Voxels Texture. This would be very expensive in 
a vertex shader, because it requires a texture fetch for each voxel, and current vertex shaders 
do no implement efficiently this operation. For this, we have split the computation of the 
Buckets Texture into two steps: first, we compute the bucket boundary voxels using a fragment 
shader and next, we construct the Bucket Texture using a vertex shader. 

In the first step, we render the Z-Sorted Voxels Texture into an auxiliary texture that 
indicates for each voxel if it is bucket-boundary or not. This auxiliary texture stores for each 
voxel the coordinates of its corresponding bucket in the Bucket Texture in the R and G 
channels. In the B channel, it stores an arbitrary z value inside the viewing frustum if the voxel 
is bucket-boundary and outside otherwise. The alpha channel stores the index of the voxel in 
the Z-Sorted Voxels Texture (see Figure 4). 

The second step uses this auxiliary texture as a VBO and renders it using glPoints of size 
one. The points corresponding to non bucket-boundary voxels are rejected in the early-depth 
test. Thus, only the bucket boundary voxels are rendered in the Bucket Texture. The shader 
writes in the texture only the index of the voxel in the Z-Sorted Voxels Texture. 

Figure 4. Buckets Texture construction. In this example, znear value is 0.0 and zfar is 1.0. The 
bucket boundary voxel i has a 0.5 z value in the auxiliary texture, and thus, it is rendered in the Buckets 
Texture. The non-bucket boundary  voxel j is rejected. 

3.6 Rendering (RENDER) 

The rendering process needs the size of the buckets and so, the Bucket Texture is transferred 
back to the CPU. This is a very low cost operation, because the texture size is small (the 
number of buckets or slabs). Then, we have the distribution of the buckets on the CPU and, on 
the GPU, the depth sorted voxels. Again, we use the R2VB extension to create a VBO that 
contains all the voxels. In order to render slabi, we splat all the voxels of the buckets that may 
intersect it: from bucket bucketi−radius to bucketi+radius, being radius the radius of the voxel’s 
kernel. This is illustrated in Figure 3. To render all the voxels of a bucket, we use DrawArray 
with the first voxel’s position and the number of voxels of the bucket. 

Starting at this point, the rendering pipeline proceeds as in previous GPU implementations 
of ISSB Splatting. The voxels are splatted using the glPoint primitive with the PointSprites 
extension. This extension allows us to create an automatic quad from a glPoint, and thus, it 
reduces to one instead of four the vertex instances. Voxels have a different kernel footprint in 
the different slabs that they intersect. Neophytou and Mueller [14] propose to store only one 
footprint and to modulate it with an appropriate slab coefficient. Alternatively, in order to 
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have a better tuning of the splats, we propose to compute all the different kernel footprints and 
to store them all in one 2D texture. When a voxel is splatted, an index to its footprint is 
computed and used to determine the coordinates of the sub-texture containing the 
corresponding footprint. This is trivial to do for splatting with texture quads, but a little more 
difficult using Point Sprites, since with this extension the texture coordinates are computed 
automatically. For Point Sprites, the correct texture coordinates must be computed in a vertex 
shader. 

4. BRICK PROCESSING 

The limitations of our method can come from the texture size which is limited and may not 
always fit an entire volume. In our case, the memory limitation is 4096x4096. This allows us 
to render up to 16M selected voxels, which is a reasonable model size. 
 

Figure 5: The proposed GPU Image-Space Sheet-Buffered (ISSB) Splatting Pipeline. 

However, when larger models need to be processed, we subdivide them using bricks [15]. 
Each brick is stored on the GPU as a 2D texture (Voxel Bricks Texture). The maximum 
number of bricks is given by the texture memory size. The new pipeline is represented in 
Figure 5. Bricks are computed by subdividing the volume into octants. They are traversed 
orderly according to the camera position. 

A drawback of bricking is that overlapping kernels at the boundary between bricks can be 
composed in incorrect order. However, bricking is needed when the number of selected voxels 
is large, and thus the ratio pixels per voxel is generally low. In this case, kernels do not 
overlap very much and artefacts at the brick boundary are not perceivable. 

For very large datasets such that all the bricks cannot be loaded in GPU-memory, before 
processing a brick, we check if it is already in the GPU. Otherwise, we need to transfer it from 
the CPU. 

5. RESULTS 

Table 1 shows the results of the proposed method for different datasets. Colour plates of the 
rendered images are included in Figure 6. In order to evaluate the improvement of our 
strategy, we have compared it with an implementation that computes the buckets on the CPU 
and uses the GPU only in the second part of the pipeline. The simulations have been 
performed on a Pentium Dual Core 3.2 GHz with 3 Gb memory and a NVidia GeForce 7900 
GTX with 512 Mb memory and a NVidia GeForce 8800 GTX with 768 Mb. The results show 
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that our method accelerates rendering in a factor of 2  with the 7900 card and between 3 and 
3.5 with the 8800. 

Table 1. Results. The efficiency of rendering is measured in frames per second. It is computed for a 
visualization sequence with a moving camera. All the images are rendered with semi-transparency. 
Frames per second in the CPU column correspond to an implementation of the method that uses GPU 
only for the rendering part. GPU results correspond to our pipeline. 

 
In all the simulations, we have seen that the most expensive stage of the pipeline is sorting. 
Therefore, even better performance can be expected when new GPU-based sorting methods 
appear. 

 

Figure 5. The proposed GPU Image-Space Sheet-Buffered (ISSB) Splatting Pipeline. 

 

 
Dataset 

 
Size 

Effective  
voxels 

CPU-7900 
fps 

GPU-7900 
fps 

CPU-8800 
fps 

GPU-8800 
fps 

Lobster 324x301x56 233K 13.2 27.2 15 48.6 
Engine 256x256x128 1.3M 2.4 5 2.6 9.4 
BostonTeapot 256x256x178 4.9M 0.8 1.4 0.8 2.6 
Aneurism 256x256x256 169K 18.4 26 21.4 39.4 
Bonsai 256x256x256 1.3M 2.4 5 2.8 9 
StagBettle 832x832x494 13.8M 0.4 0.6 0.4 1 
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6. CONCLUSIONS 

Splatting provides high quality images and it can be used for voxel models as well as for 
point- based surface models, that are unsuitable for ray-casting based rendering. In this paper, 
we have proposed a new Image-Space Sheet-Buffered (ISSB) Splatting design that creates and 
manages the buckets on the GPU. Our implementation achieves frame rates more than three 
times faster than methods that use the GPU only for the rendering part. Moreover, the 
evolution of the speed of GPU algorithms is dramatical in relation to the evolution of CPU 
algorithms. Therefore, as GPUs will evolve, the cost of the most expensive part of our 
pipeline, sorting, will reduce, and  thus, much higher rendering speed-ups are expected. 

Our future research is to try to adapt this method to multimodal data that require 
performing a fusion of the property values of the different modalities either in the splatting 
stage or during the buckets construction depending on if post-shading or pre-shading is 
applied. Furthermore, we will investigate how to render time-varying data using this strategy 
taking into account frame-to-frame coherence. 
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