
 IADIS International Journal on Computer Science and Information Systems
Vol. 2, No. 2, pp. 122-140
ISSN: 1646-3692

 122

SINGLE-PASS MULTI-VIEW RENDERING

Thomas Hübner, Yanci Zhang and Renato Pajarola Visualization and Multimedia Lab,
Department of Informatics, University of Zurich, Binzmühlestrasse 14, CH-8050 Zürich

huebner@ifi.uzh.ch , zhang@ifi.uzh.ch , pajarola@acm.org

ABSTRACT

The fundamental drawback of current stereo and multi-view display techniques is the necessity to
perform multi-pass rendering (one pass for each separate view) and subsequent image composition-and-
masking for generating multi-stereo views. Thus the rendering time increases in general linearly with the
number of rendered views. An increase in frame-rate can be achieved by sub-resolution rendering and
extrapolation before display, at the expense of degraded image quality.

To overcome these disadvantages, we introduce a new method for rendering volumes, points and
triangles meshes on multi-view auto-stereoscopic displays. Our method exploits the programmability of
modern graphic processing units (GPUs) for rendering multi-stereo views in a single rendering pass. The
views are calculated directly on the GPU including sub-pixel wavelength selective views. We describe
our algorithm precisely and provide details about its implementation. Experimental results demonstrate
the performance advantages of our single-pass multi-view rendering algorithms compared to the standard
multi-pass rendering approaches.

KEYWORDS

Multi-View Rendering, Volume Visualization, Point Splatting, Triangle Meshes, Three-
Dimensional Displays

1. INTRODUCTION

Multi-view auto-stereoscopic display systems [Dodgson 2005] provide greatly enhanced
spatial understanding of 3D data through perceptual cues for stereo and motion parallax.
However, despite that auto-stereoscopic displays are becoming a common technology, spatial
visualization has received little attention in the field. In multi-view display systems, rendering
performance is generally an increased bottleneck, as compared to single-view displays
multiple images have to be rendered simultaneously for every frame. An extremely high
computation and graphics power is required to do so with conventional approaches. Without
the exploitation of similarities, rendering two views (for stereo) can require already twice the

SINGLE-PASS MULTI-VIEW RENDERING

 123

rendering time t of a mono-view rendering algorithm [Ebert et al 1996, Miniel et al 2004].
Correspondingly, an N-view display requires a rendering time of up to N • t [Portoni et al
2000]. This overhead prohibits effective multi-view rendering of large data sets.
 Specific rendering algorithms for multi-view autostereoscopic displays have not been
proposed so far. Consequently, as done to date (e.g. SGI Interactive Stereo Library [Kakimoto
2005]), N views need to be rendered individually, and then combined and masked for a multi-
view auto-stereoscopic display.
 We address the problem of efficiently generating N views simultaneously in the context of
volume rendering, point splatting and triangle meshes by presenting a solution that exploits
the programmability of modern GPUs to calculate the multiple views directly on a per-
fragment basis. Since our approach is a single-pass rendering algorithm, it requires
approximately K • t rendering time independent of the display resolution and the number N of
views. The constant K indicates the number of different views per-pixel, i.e. K=3 if the display
system supports RGB sub-pixel views. This paper extends our previous multi-view point and
volume rendering algorithms [Hübner et al 2006, Hübner and Pajarola 2007] to include
triangle based rendering and explains the basic ideas in a unified context from a general multi-
view rendering point of view. Furthermore, we present additional details such as detailed
vertex and fragment shader programs as well as experimental results.
 The remainder of the paper is organized as follows. The theory for multi-view auto-
stereoscopic displays is provided in Section 2. This is followed by the description of our
multi-view rendering algorithms in Section 3. Section 4 reports experimental results for
different test data sets and multi-view rendering algorithms. Finally, our paper is concluded in
Section 5.

2. MULTI-VIEW RENDERING

2.1 Auto-Stereoscopic Displays

Multi-view auto-stereoscopic displays provide a spatial image without requiring the user to
use any special device [Dodgson 2005]. A spatial image is a 3D image that appears to have
"real" depth, that is, cues are provided to the human visual system to derive the depth of the
displayed 3D data. To avoid confusion, we will use the terminology spatial if we refer to these
images. A spatial image can be created by presenting different views of the 3D data
independently to each eye and thereby simulating stereopsis. Spatial images can dramatically
improve the spatial understanding and interpretation of complex three-dimensional structures.
A general introduction to auto-stereoscopic 3D display types and technologies is given in
[Dodgson 2005]. Here we focus on passive auto-stereoscopic 3D displays which generate
multiple views for multiple possible simultaneous observers and view positions, in contrast to
active systems which track a single user and generate exactly two views for each tracked
observer position.
 Multi-view auto-stereoscopic displays generally incorporate stereo as well as (horizontal)
motion parallax. As shown in Figure 1, the infinite number of views an observer can see in the
real world is partitioned into a finite number of available viewing zones. An auto-stereoscopic
display emits the different views directionally-dependent into the viewing space in front of the
display system. Each view is constant, or at least dominant, for a given zone of the viewing

IADIS International Journal on Computer Science and Information Systems

 124

space. The observer perceives a spatial image as long as both eyes are in the viewing space,
and observe the image from different view zones respectively. Changes in the observer's
position result in different spatial depth perceptions. A feature of multi-view auto-stereoscopic
displays is that multiple observers can be accommodated simultaneously, each having a
different spatial perception according to his point of view in the viewing space.

Figure 1. Auto-stereoscopic display principle: Discretization of an infinite view space into finite number
of view zones

Modern auto-stereoscopic displays are mostly based on conventional flat-panel LCDs. With
the help of optical filter elements, barriers and lenses, RGB-pixels are restricted and emitted
into different zones in the viewing space [Dodgson 2002, Schmidt and Grasnick 2002,
Dodgson 2005]. Two major optical filter elements are used today: lenticular sheets and
wavelength-selective filter arrays. A lenticular sheet consists of long cylindrical lenses. They
focus on the underlaying image plane and are aligned so that each viewing zone sees different
sets of pixels from the underlaying image plane. Lenticular sheets provide a different view for
each pixel for a given eye position [McAllister et al 1993, Dodgson 2005]. Wavelength-
selective filter arrays are based on the same principle, except that the lenses are diagonally
oriented and each of the three color channels of a RGB-pixel corresponds to a different view
zone. Therefore, wavelength-selective filter arrays provide a sub-pixel resolution of view
zones [Schmidt and Grasnick 2002, Lee and Ra 2005].
 As illustrated in Figure 2, the lens arrays distort the optics of the LCD panel such that each
element -- a pixel or sub-pixel RGB component in lenticular sheets or wavelength-selective
filters respectively -- corresponds to a certain view zone. Generally, the lens optics is
calibrated such that at a given eye distance the different zones line up adjacently without
mutual interference. The separation between views at this distance is matched to an average
eye separation. Hence the observer can move his head sideways at this distance, within limits
of the covered viewing space, and experiences stereo and motion parallax as each eye sees a
different image view accordingly.

SINGLE-PASS MULTI-VIEW RENDERING

 125

Figure 2. Viewing zones converge at a given observer distance

For a given horizontal pixel resolution m of the LCD panel, multiple views can only be
generated at the expense of reduced spatial screen resolution using spatial multiplexing. In
principle, for generating N different views, the horizontal display resolution is split by the
number N of views. Pixels are interleaved horizontally in such a way that pixel x basically
corresponds to view zone x mod N. However, using wavelength-selective filters, the reduction
in horizontal resolution is limited to

because each pixel's RGB components correspond to three different view zones. Equation 1
demonstrates the advantage of wavelength-selective filter arrays. The use of sub-pixel view
directions causes less degradation of the horizontal resolution for multiple views.
 We explain our multi-view rendering algorithms in the context of auto-stereoscopic
displays featuring such wavelength-selective filter arrays. Though the presented methods can
easily be adopted to different filter arrays. In fact, without sub-pixel view resolution, the
performance of our algorithms increases by up to a factor of three compared to conventional
multi-view rendering.

2.2 View Geometry

In Figure 3a the viewing configuration of a single-view setup is illustrated with a standard
view frustum capped by the near and far clipping planes. The corresponding 2D image
resulting from perspective projection is not considered a spatial image in the sense as
introduced earlier. Nevertheless, this 'flat' image can contain important basic depth cues such
as perspective distortion, visibility occlusion and distance attenuation. In contrast, a multi-
view configuration as shown in Figure 3b provides additional depth cues such as stereo and
motion parallax. The visible object space is defined by the intersection of the mono-view
frusta of all individual views. This multi-view frustum is defined by the number N of views
and the used intraocular distance. The focal plane where all views converge defines the
perceived spatial distance of the multi-view display.

IADIS International Journal on Computer Science and Information Systems

 126

 As shown in Figure 3b, each perspective view is generated from a translational-offset
virtual camera placement which corresponds to different off-axis asymmetric sheared view
frusta with parallel view directions. A spatial image captures the perspective projection of all
N views, hence contains multiple perspective images. As also indicated in Figure 3b, the focal
plane of an auto-stereoscopic display device is well defined by the distance where the viewing
zones converge. To match a multi-view rendering configuration to the physical display for
optimal parallax effects, and for simplicity of the discussion, we set the focal distance of the
viewing configuration in Figure 3b to the convergence distance indicated by the display
device.

a) b)

Figure 3. a) Single-view frustum with near and far clipping planes and b) Visible multi-view frustum as
intersection of individual off-axis asymmetric sheared view frusta

A spatial image provides stereo parallax depth cues in that for a given pixel on the screen it
presents a color originating from different spatial positions to the left and right eye-view
respectively. The difference of the image presented to the left and right eye depends on the
distance of the visible object from the focal plane and is resolved per pixel. If the spatial image
contains information from more than two views then motion parallax depth cues are supported
in addition to stereo parallax. Motion parallax refers to the observation that small movements
of the eye position reveal small changes in visibility occlusion (see also [McAllister 2002]).
 Let us call the plane in which the virtual cameras of the N different views are placed the
camera plane since an observer can experience the best stereo effect from views on this plane.
Given the camera plane at a focal distance fd from the focal plane, the point of a geometric
primitive -- i.e. point on a planar surface -- visible in a view vi depends on the surface normal
n and the primitive’s position as illustrated in Figure 5a and 5b. In the simple case, where the
geometric primitive is parallel to the camera plane (e.g. used in direct volume rendering based
on planar proxy geometries) we only have to consider the offset offi parallel to the camera
plane as illustrated in Figure 4.
 Values contributing to a pixel originate from different positions on the geometric primitive.
Furthermore, the projections of the same pixel in multiple views may not necessarily all be
located on the (same) primitive (Figure 5a and 5b, point qi).

SINGLE-PASS MULTI-VIEW RENDERING

 127

Figure 4. Multi-View volume parallax geometry

a) b)

Figure 5. a) Multi-View point splatting parallax geometry and b) Multi-View triangle parallax geometry

2.3 Spatial Image Generation Method

As we assume a passive auto-stereoscopic 3D display system, the number of observers and
positions are not known. Hence each viewing zone may equally likely be visible to the
observer and we need to generate all N views simultaneously for each frame. For each view
we need to render a separate perspective image of the 3D data set. Eventually, the spatial
image is generated by combining the perspective images from N different camera angles.
 The conventional approach of a multi-view rendering system, e.g. such as [Kakimoto
2005, Portoni et al. 2000, Schmidt and Grasnick 2002 and Miniel et al. 2004] is to render the
3D data in N passes using N different perspective (off-axis asymmetric sheared) view frustum
configurations according to the multi-view setup as indicated in Figure 3b. The resulting N
images must then be combined into a spatial image conforming to the auto-stereoscopic
display device. For lenticular sheets and wavelength-selective filter arrays, this combination is
achieved by masking the (sub-)pixels of each view according to the multi-view masks as
shown in Figure 6. This mask is initialized once for the used N views of a specific display
device during the render setup phase. After rendering the N views to N target images Ii, the
final spatial image is combined by

IADIS International Journal on Computer Science and Information Systems

 128

For lenticular sheet displays the function Mask(x, y) is given by x mod N. For wavelength-
selective filter arrays the masking function is only slightly more complex as it incorporates
masking of individual RGB color components per pixel and includes a diagonal shift of the
views as illustrated in Figure 6b.

a) b)
Figure 6. Interleaved Multi-view selection masks for a) lenticular sheets and b) wavelength-selective

filter arrays (N=8)

It is clear that the conventional multi-view rendering solution requires rendering of N
perspective images followed by N-fold image masking and compositing into the final spatial
image. This leads basically to a N times cost increase compared to single-view rendering. To
improve performance, intermediate images can be rendered at sub-resolution and restored to
full-resolution during compositing by up-sampling at the expense of blurring artifacts.
However, geometry processing cost overhead remains at N-1 times, which will be the major
limiting factor for large data sets.

In the following section we present our multi-view method which requires rendering the
geometry only once, and no subsequent image masking, in contrast to N times as for
conventional multi-view display. Since the geometry is rendered only once, the full resolution
can be supported and sub-resolution rendering is not necessary.

3. SINGLE-PASS MULTI-VIEW RENDERING

3.1 Overview

For multi-view rendering our algorithm works significantly different from prior methods. In
one single rendering pass we generate and illuminate multiple views directly on the GPU
according to the multi-view parallax geometry illustrated in Figures 4 and 5. Based on the idea
of covering the multi-view projections of a geometric primitive by an enlarged quad (Section
3.2), we use primitive dependent per-pixel ray intersection tests (Section 3.3) to determine the
view-accurate projection of a rendering primitive to image-space. The view i of each pixel or
sub-pixel is calculated by employing the display mask (Section 3.4). Finally Section 3.5
explains the details of our implementation for volume rendering, point splats and triangle
primitives.

SINGLE-PASS MULTI-VIEW RENDERING

 129

3.2 Multi-View Projection

In the context of a general multi-view configuration, i.e. the geometry is not coinciding with
the focal plane (see also Figure 4 and 5), a geometric primitive projects differently for the
different viewpoints as illustrated in Figure 7. Single-pass multi-view rendering requires to
calculate a view per-pixel or sub-pixel, but access to the scene geometry on a per-pixel level is
unfeasible. Therefore, we must cover all projections for multiple views, so the view
calculation can be performed on a per pixel-basis during rasterization. This can be achieved by
rasterizing an extended quadrilateral in image-space. As the views are only horizontally
separated (Section 3), a wide quad Q = (qA, qB, qC, qD) covering all possible projections of a
geometric primitive can be drawn as shown in Figure 7a.
 Given the maximal view eccentricity vd over all views, we can see that we need to find the
minimal and maximal projection points r and s in Figure 7b. The covering quad has to be
enlarged horizontally to cover this projection. Vertically, the quad only needs to cover the
height of the perspectively projected primitive. Therefore, for a triangle primitive we have the
quad corners given by:

q.x = MIN[(pi.x - vd) · fd / pi.z] | MAX[(pi.x + vd) · fd / pi.z]

q.y = MIN[pi.y · fd / pi.z] | MAX[pi.y · fd / pi.z

a) b)

Figure 7. Multi-view dependent projection for a triangle geometric primitive

 q.z = fd

The perspective accurate projection to the image-space is achieved primitive dependent by
per-pixel ray intersection tests, that can be efficiently implemented in fragment shaders.
 In multi-view volume rendering the proxy geometry is parallel to the image and camera
plane (see Figures 4 and 8a). Moreover, the entire volume dataset is accessible on a pixel-level
in the shader. This simplifies the approach significantly for multi-view volume rendering.
Multiple views can be rendered in a single pass without the need to cover multiple projections,
so the proxy geometry is left unchanged in the case of 3D texture based volume rendering.

IADIS International Journal on Computer Science and Information Systems

 130

3.3 Primitive Dependent Ray Intersection

Primitive dependent ray intersection tests are performed individually for each pixel or sub-
pixel to find the accurate primitive-plane to image projection. We show exemplary the ray
intersection tests for volume rendering (based on a viewport aligned proxy geometry), point
splats and triangle primitives.

3.3.1 Ray-Volume Intersection

As illustrated in Figure 8a the proxy geometry for 3D-texture based volume rendering is
parallel to the image plane, see also Section 3.5.1. Therefore multiple views can be calculated
directly from the center view perspective projection using the offset

, (1)

where vdi is the camera offset of view i and d is the distance of the visible point from the
camera plane (see also Figure 4).

3.3.2 Ray-Splat Plane Intersection

Given a point sample p, its normal n, viewpoint vp and a pixel in image-space with
coordinates x = (x, y, fd) its corresponding projection on the splat plane (Figure 8b) is
implicitly determined by n · (- p) = 0 and = vp + l · (x - vp), hence

 (2)
The ray x - vp from a viewpoint vp through an image-plane pixel x is intersected directly with
the splat plane according to Equation 2. The splat plane intersection then defines the
distance as ω = | - p| that is used to decide if the intersection point is located inside the
circular point splat or not.

a) b)

Figure 8. a) Ray-Volume Intersection and b) Ray-Splat plane intersection

SINGLE-PASS MULTI-VIEW RENDERING

 131

3.3.3 Ray-Triangle Intersection

A point x on a triangle can be defined by it’s barycentric coordinates x(u, v) = (1-u-v)*p0 +
u*p1 + v*p2 where p0, p1, p2 are the vertices of the triangle. The point x is located on the
triangle if u and v fulfill the conditions u ≥ 0, v ≥ 0 and u+v ≤ 1.
 The intersection ray is defined by = vp + l · (x - vp) so the intersection between the ray
and the triangle is given by = (1-u-v) * p0 + u * p1 + v * p2. If there is a triplet (l, u, v) that
satisfies the previous equation, and complies with the restrictions for u and v, then the ray
intersects the triangle. The ray-triangle intersection can be fast and efficiently determined as
described by [Möller and Trumbore 1997] solving the linear system:

 (3)

They interpret the linear system geometrically as a series of transformations (see Figure 9 with
M = [-(vp-x), p1-p0, p2-p0]). First the triangle is translated to the origin and then transformed to
a unit triangle in the y-z plane with the ray direction aligned with x.

Figure 9. Geometric interpretation of Möller and Trumbore’s triangle intersection algorithm

3.4 Employing Display Mask Map

According to the multi-view masks illustrated in Figure 6, there is one view v = Mask(x, y) or
three views vRGB = MaskRGB(x, y) to consider for each pixel (x, y) for lenticular sheets or
wavelength-adaptive filter arrays respectively. We consider the more complex sub-pixel
wavelength-selective filter mask situation here. Hence before deciding on the contribution of a
view vi to a pixel on the screen we need to determine the views for the pixels physical screen
position (x, y). The wavelength-selective filter mask in Figure 6b has a reoccurring pattern of
size 8 × 12. Depending on the physical screen position (x, y), which is available in the
fragment shader, we can calculate the xoffset and yoffset inside this mask by Equations 4 and
5, which refer to the mask index of the first sub-pixel component (R).

xoffset = (3 • x) % 8 (4)
yoffset = (screen_height_in_pixels - y) % 12 (5)

The first view vR of a fragment is computed by Equation 6 which considers the diagonal shifts
of the wavelength-selective filter mask from Figure 6b. The other views are vG = (vR +1) % 8
and vB = (vR +2) % 8.

IADIS International Journal on Computer Science and Information Systems

 132

 (6)

3.5 Implementation

3.5.1 Volume Rendering

Our multi-view DVR algorithm is based on hardware accelerated 3D texture mapping [Cabral
et al 1994, Gelder and Kim 1996, Meissner et al 1999]. We make use of pre-calculated voxel
gradients which allow the use of high quality gradient estimation filters like the Sobel 3D
operator [Jain 1989], and compared to on-the-fly gradient estimation in the shader [Engel et al
2006] achieve higher rendering speeds. Pre-calculated gradients come at the expense of
increased memory cost. However, we store the volume data into one 3D RGBα-texture with
gradient and scalar values in the RGB and α channels respectively. To improve visual quality,
classification of the scalars is done by pre-integration as proposed in [Engel et al 2001]. The
2D pre-integration table is calculated and updated from the transfer function and kept in
another 2D RGBα-texture.
 Hardware accelerated 3D texture based volume rendering is performed by defining a proxy
geometry e.g. a stack of viewport-aligned quadrilaterals (Figure 10a), with each quad having
the size of the volume diagonal. Interpolated texture coordinates on the proxy geometry are
used to sample the volume, and to extract scalar as well as gradient values. Gradients and
scalars from the 3D texture are trilinearly interpolated. The number of proxy quads defines the
volume sampling in z-dimension and is usually set to the volume resolution if pre-integration
is used. While increasing the number of quads improves image quality, fewer quads result in
higher frame rates.
 The stack of quadrilaterals is set parallel to the viewport and camera plane (Figure 4).
Rotation of the volume is achieved by reorienting the 3D texture (Figure 10b). To avoid
excessive texture lookups and fragment processing, 3D volume aligned clipping planes are
specified such that only the clipped quads are processed (Figure 10c).

a) b) c)

Figure 10. 3D volume texture mapping. a) Quadrilateral proxy geometry. b) Rotated 3D volume with
viewport aligned quads. c) Proxy geometry clipped to rotated 3D volume

The proxy geometry is rasterized as clipped quadrilaterals on screen. The 3D texture volume is
sampled for each generated fragment for two scalar values and gradients. The scalar values
define a linear segment used to reference into the pre-integration table. Pre-integration reduces
artifacts caused by high frequencies in the transfer function which otherwise require higher
sampling. Using the volume gradients and lighting parameters, for each fragment (x,y) of
every slice k the lighting equation is evaluated yielding a color Ck(x,y). Rendering the slices
back-to-front (k=0...K), the direct volume rendering integral is incrementally approximated by

SINGLE-PASS MULTI-VIEW RENDERING

 133

, where is the background
color. Colors must be pre-multiplied with opacity α which is the case for pre-integration.
 A standard vertex shader used for pre-integration [Engel et al 2006], computes the clipped
vertex position (1), transformed texture coordinates (2, 8) and the coordinates of the linear
segment used for pre-integration (2-8). For multi-view volume rendering we additionally
compute the viewport-parallel direction of the parallax offset offi in texture space (9). We also
have to pass the eye-space distance d – from the proxy quad to the camera plane – to the
fragment shader (10), for calculating the multi-view parallax offsets as in Equation 1.

void vertex_shader (void) {
1 gl_Position = ftransform();
2 gl_TexCoord[0] = gl_TextureMatrixInverse[0] * gl_Vertex;
3 vPosition = gl_ModelViewMatrixInverse * (0, 0, 0, 1);
4 vDir = normalize(gl_ModelViewMatrixInverse * (0, 0, -1, 1));
5 eyeToVert = normalize(gl_Vertex - vPosition);
6 backVert = (1, 1, 1, 1);
7 backVert = gl_Vertex - eyeToVert * (sliceDistance / dot(vDir, eyeToVert));
8 gl_TexCoord[1] = gl_TextureMatrixInverse[0] * backVert;
9 gl_TexCoord[3] = gl_TextureMatrixInverse[0] * (1, 0, 0, 0);
10 d = (gl_ModelViewMatrix * gl_Vertex).z;
}
For the fragment shader shown below, the 3D RGBα volume texture, the 2D RGBα pre-
integration table as well as the multi-view configuration parameters (focal distance, camera
offset) are passed as uniform variables from the application. According to the multi-view
masks illustrated in Figure 6 and Section 3.4 the views are determined (1-3). After knowing
the view for each sub-pixel of the fragment, the multi-view offsets offi can be calculated based
on Equation 1. The targeted auto-stereoscopic display has N=8 possible views. Hence vdi
translates for a given view i at a fixed intraocular distance iocd to vdi = (i - 3.5) • iocd, and the

final equation for calculating the offset for a particular view is thereby
with the intraocular distance iocd and focal distance fd given by the application (6). For each
view the texture coordinates of the pre-integrated segments are calculated by an offset along
the parallax direction (7, 8), and the 3D texture lookups provide two gradient and scalar values
(9, 10). The scalar values index into the pre-integration table for the corresponding color and
opacity values (11).
 Lighting uses the averaged and normalized volume gradients (12) as surface normals in the
Blinn-Phong shading model , with the
ambient, diffuse and specular light intensity Ia,d,s, reflection coefficients ka,d,s and shininess
factor sh. All three sub-pixel views are shaded independently depending on the direction of the
surface normal (13-16). Note that current GPUs do not support a different α value per color
channel for α-blending. Thus at this time we average the fragment's α over the three
contributing views. Nevertheless, comparing to a multi-pass multi-view implementation not
exhibiting this restriction, no visual artifacts are noticeable.
 The code below shows a simplified sub-pixel resolution fragment shader implementing our
single-pass multi-view volume rendering approach.

IADIS International Journal on Computer Science and Information Systems

 134

void fragment_shader (void) {

1 xoffset = mod(3. * gl_FragCoord.x, 8.);
2 yoffset = mod(1200. - gl_FragCoord.y, 12.);
3 view.r = mod(floor((1. + yoffset + floor(yoffset / 3.)) / 2.) + xoffset, 8.);

6 off = (view - 3.5) * iocd * (d - fd) / fd;

7 offsetSF [0..2] = gl_TexCoord[0].xyz + off.x..z * gl_TexCoord[3].xyz;
8 offsetSB [0..2] = gl_TexCoord[1].xyz + off.x..z * gl_TexCoord[3].xyz;
9 lookupSF [0..2] = texture3D(volume, offsetSF[0..2]);
10 lookupSB [0..2] = texture3D(volume, offsetSB[0..2]);

11 c [0..2] = texture2D(preInt, vec2(lookupSF[0..2].a, lookupSB[0..2].a));
12 normal [0..2] = normalize(2. * lookupSF[0..2].rgb - 1. + 2. * lookupSB[0..2].rgb - 1.);

13 diffuse = max(gl_LightSource[0].position.xyz * mat3(normal[0], normal[1], normal[2]),
0.0);
14 specular = max(gl_LightSource[0].halfVector.xyz * mat3(normal[0], normal[1], normal[2]),
0.0);
15 specular.r..b = pow(specular.r..b, sh);

16 gl_FragColor = (gl_LightSource[0].ambient * (c[0].r, c[1].g, c[2].b) +
 gl_LightSource[0].diffuse * (c[0].r, c[1].g, c[2].b) * diffuse +
 gl_LightSource[0].specular * (c[0].r, c[1].g, c[2].b) * specular,
 (c[0].a + c[1].a + c[2].a) / 3.);
}

3.5.2 Point Splatting

Our multi-view point rendering implementation follows the conceptual principle of rendering
point splats using an ε-z-buffer visibility test combined with α-blending based interpolation of
overlapping splats in image-space as basically introduced in [Pfister et al. 2000, Zwicker et al.
2001]. The basic GPU acceleration follows the principles of [Ren et al. 2002, Botsch and
Kobbelt 2003, Pajarola et al. 2004] which render some geometry (quad,triangle, sprite) that
covers the point splat disk in image-space. Rasterization of a projected disk is achieved
through transparent α-masking of fragments outside the disk, and weighted α-blending
(accumulation) of fragments inside the disk. The accumulated weighted color is normalized
eventually, dividing by the sum of weights, to form the final image.
 To avoid the commonly used 2+1 pass rendering process, which first initializes an ε-offset
depth-buffer and is followed by the α-blending of the front-most visible point splats, we
employ a recently introduced approach which processes the geometry in one rendering pass
[Zhang and Pajarola 2006a, Zhang and Pajarola 2006b]. The basic idea is a deferred blending
concept that delays the ε-z-buffer visibility test as well as smooth point interpolation to an
image post-processing pass.
 The multi-view splatting algorithm follows the main steps of this 1+1 pass point based
rendering (PBR) algorithm: dividing the points into multiple groups in a preprocessing stage,
and then 1) rendering groups Sk to different textures to form partial images Ik in the geometry
pass, followed by 2) eventually combining partial images together to achieve the final result in
the image compositing pass.
 In the context of multi-view splatting, the splat projections of different views cover slightly

SINGLE-PASS MULTI-VIEW RENDERING

 135

different areas in the image plane. As introduced in Section 3.2, an enlarged quad covering
splat projections of all views is rendered. We choose to calculate the quad corners in a vertex
shader according to the Equations in Section 3.2. In order to do that, we input the center of a
splat 4 times to the vertex shader, including its position, radius, normal and color. Moreover,
an index indicating the corner to be processed is attached to the point. In the vertex shader, we
use this index to calculate the corners of the extended quad.
 The outline of our multi-view PBR algorithm is listed below and corresponds to a
wavelength-selective sub-pixel resolution multi-view display system as described in Section 3.

Geometry Pass:

1 turn on z-test and z-update;
2 foreach group Sk do
3 clear z-depth and color of texture Ik;
4 render group Sk to texture Ik;
5 foreach si element Sk do
6 calculate the corresponding corners of the quad
 according to Equation in Section 3.2;
7 transform and project the corners of the quad;

Image Compositing Pass:

1 foreach f element I do
2 crgb(f) = 0;
3 wrgb(f) = 0;
4 d = mink(cd(f)k);
5 for k=0 to K-1 do
6 if cd(f)k ≤ d + ε then
7 unpack color values to
crgb(f)k;

8 foreach generated fragment f element Ik do
9 determine sub-pixel views corresponding to current
fragment;
10 perform ray-splat intersection calculations;
11 calculate colors, kernel weights and depth values;
12 output averaged z-depth cd(f)k;
13 pack colors and kernel weights, and output them to
texture Ik;
14 endforeach
15 endforeach
16 endforeach

8 unpack weight values to
wrgb(f)k;
9 crgb(f) = crgb(f) + crgb(f)k;
10 wrgb(f) = wrgb(f)+ wrgb(f)k;
11 endif
12 endfor
13 crgb(f) = crgb(f) / wrgb(f);
14 endforeach

3.5.3 Triangle Meshes

Our multi-view algorithm for rendering triangle meshes applies the same multi-view
projection principle as we use for multi-view point splatting to triangles. A standard algorithm
renderers the triangle mesh whereas each triangle is rendered as a quad primitive. Therefor we
input the last triangle vertex twice. An index is assigned to each of the vertices, identifying the
quad corners. The initial triangle coordinates are attached to each vertex as multi-texture
coordinates. This allows us to enlarge the quad properly in the vertex shader and to calculate
the exact triangle projection based on the intersection test introduced in Section 3.3.3.

3.6 Complex Output

Compared to previous methods, our multi-view algorithm is more complex due to the fact,
that we have to handle multiple views simultaneously instead of one single view. For each
view, we need to store color information and depth values. Different output strategies are
applied for volume rendering, point splatting and triangle meshes.

IADIS International Journal on Computer Science and Information Systems

 136

 For volume rendering the z-depth is the same for all views inside a single fragment. Hence
only the color values of maximal three different views need to be combined into one output
color. While each fragment color component is set to the corresponding view’s R-, G- or B-
component, the alpha values of all views are averaged and written to the alpha channel.
 Rendering point splats, actually requires an averaged depth value for multiple views which
we employed in our implementation because the ε-z operation in the composting pass renders
a high precision depth value unnecessary. But even with the averaged depth value used, three
different color values need to be forwarded from the geometry processing pass to the image
composition pass. We use a 32-bit floating point texture to store the output from the geometry
processing. The high precision texture allows us to use packing operations to pack the colors
as two half floating values into a single 32-bit floating value and then to unpack them in the
image compositing pass.
 Correctly rendering triangle meshes requires an exact depth value. Thus combining the
depth values from different views by averaging causes artifacts that are minimized when using
the minimal depth instead.

4. RESULTS

We have implemented our multi-view rendering methods in OpenGL using OpenGL Shading
Language 1.1. The presented results were generated on a 2.66GHz MacPro with a ATI Radeon
X1900 graphics card supported by 512MB. The targeted multi-view auto-stereoscopic display
uses a wavelength-selective filter array providing 8 views and has a resolution of 1900x1200.
 Our single-pass multi-view rendering algorithm (GPU MV) is compared to a standard N-
pass (8 MV) and to a baseline standard single-view (SV) implementation. To analyze the basic
behavior, all algorithms use the same code base. For efficiency, the standard multi-view
algorithms (8 MV) use a render-to-texture approach, and multi-texturing of the N view images
for compositing and masking of the final spatial image.
 The GPU MV rendering algorithm has to compute three different views – one for each
RGB component – per processed fragment. Consequently, the performance of GPU MV can
be expected to be significantly better for lenticular sheet displays with only a single view per
pixel.
 In Chart 1 we report frame rates for generating (N=8)-view spatial images at 512 × 512
resolution for different standard volume data sets. As expected, the standard 8 MV algorithm
suffers significantly from the 8 rendering passes it has to perform. The expected performance
ratio of 8:1 between SV and 8 MV roughly holds, and GPU MV improves over 8 MV by a
factor of ≈ 2-4. Moreover, we can see that the theoretical ratio of 3:1 between SV and GPU
MV holds for medium data sets and, that our algorithm performs increasingly better for larger
data (Chart 1b).

SINGLE-PASS MULTI-VIEW RENDERING

 137

a) b)

Chart 1. Multi-View Volume Rendering (512 × 512 window resolution, N=8 views)
a) Performance comparison in fps and b) Comparison in percentage of single-view performance for

different data sets.

 Our multi-view point splatting implementation improves in the multi-pass rendering by
having at least 50% of the single-view performance. Chart 2 shows the performance
comparison for different point data sets. Our multi-view implementation performs better with
increasing data set sizes. Single-view PBR shows a strong dependance on the data set size
while the multi-view performance reduces much less. As can be seen in Chart 2b, our multi-
view rendering gets better relatively to single-view rendering with increasing data set sizes.
This is because with an increasing size of the data set, the point splats get smaller, and hence
our multi-view methods perform increasingly better due to less overhead of fragment
generation. In other terms, with high-resolution point data the overhead for multi-view
rasterization of the enlarged quad disappears. Our GPU MV multi-view splatting algorithm
achieves almost 100% of the performance of single-view rendering for the biggest data set as
shown in Chart 2b, notably generating 8 different views simultaneously.

a) b)

Chart 2. Multi-View Splatting (512 × 512 window resolution, N=8 views)
a) Performance comparison in fps and b) Comparison in percentage of single-view performance for

different data sets.

 In Chart 3 the results for multi-view triangle rendering are presented, for different triangle
mesh data sets. The multi-view single-pass triangle mesh rendering algorithm (GPU MV) does
not improve very much over the multi-pass standard triangle rendering method (8 MV). The
main reason for this can be found in two observations. First, the basic triangle rendering

IADIS International Journal on Computer Science and Information Systems

 138

pipeline is highly optimized and any processing of geometry deviating from the standard fast-
path, i.e. rendering quads instead of triangles, will immediately incur a significant
performance penalty. Second, in the ray-triangle intersection fragment shader a high-
percentage of fragments from the rasterized covering quad will be discarded as they eventually
do not contribute to any visible parts of the triangle in any view. However, the discard
fragment shader instruction does not in fact cause an early termination of the shader execution
on the currently tested GPU. Hence efficiency improvements from fragment discards will only
be exploited in future GPUs.
 For comparison we additionally provide the results of our multi-view triangle rendering
algorithm for rendering in the immediate mode of OpenGL (Chart 4). Being less optimized,
the observed rendering performance of our multi-view algorithm is inside the expected range
of ≥⅓ of the single-view performance.
 It is important to note, that the performance of our multi-view method depends on the user
defined focal plane. The farther away an object is placed from the focal plane the more
fragments will be generated by the multi-view covering quad. For muti-view volume
rendering this results in a larger offset which increases the volume access time. Nevertheless,
the number of generated fragments as well as the offset for objects placed far away from the
focal- and camera plane is limited by the maximum view eccentricity vd and and for point
splats and triangles by the projection of the geometric primitive according to Equation in
Section 3.2.

a) b)

Chart 3. Multi-View Triangle Rendering with Display List (512 × 512 window resolution, N=8 views)
a) Performance comparison in fps and b) Comparison in percentage of single-view performance for

different data sets.

a) b)

Chart 4. Multi-View Triangle Rendering, OpenGL Immediate Mode (512 × 512 window resolution, N=8
views)

a) Performance comparison in fps and b) Comparison in percentage of single-view performance for
different data sets.

SINGLE-PASS MULTI-VIEW RENDERING

 139

5. CONCLUSION

We presented a novel multi-view rendering method that exploits the programability of modern
GPUs to calculate multiple views directly on the GPU, in a single geometry rendering-pass.
This multi-view rendering method is proposed for volume rendering, point splatting and
triangle meshes. The implementation of our multi-view algorithms is compared with the
performance of a standard multi-view and single-view visualization. The experimental results
for volume rendering and point splatting show a significant performance advantage compared
to the standard multi-view multi-pass rendering. In particular, our multi-view implementation
can render N-views with more than ⅓ of the single-view performance compared to
approximately 1/N for the standard multi-view solution. This is true for employing
wavelength-selective filter arrays which use three views per fragment, and in fact approaches
single-view performance for larger data sets as well as for single-stereo. Though the
performance improvement for triangle meshes is minor, future GPUs will reduce the gap
between single- and multi-view visualization rendering even further by providing additional or
more advanced fragment and vertex shaders. Currently, the triangle-processing optimized
hardware pipeline causes significant overhead for our multi-view rendering algorithm.
However, with unified shaders as well as true fragment-discard implementation in the
fragment shaders our multi-view triangle rendering solution this situation will change. Our
multi-view triangle rendering method will dramatically benefit from these advanced shaders.

ACKNOWLEDGMENT

We would like to thank Newsight technology for their technical support for the 3D display device as well
as the Stanford 3D Scanning Repository, Cyberware and VolVis.org for providing the 3D test data sets.
We would also like to thank the Swiss National Science Foundation which partly supported this work by
grant 200021-111746/1.

REFERENCES

Botsch, M. and Kobbelt, L., 2003. High quality point-based rendering on modern GPUs. Proceedings
Pacific Graphics 2003, Computer Society Press, pp. 335-343.

Cabral, B. et al, 1994. Accelerated volume rendering and tomographic reconstruction using texture
mapping hardware. Proceedings ACM/IEEE Symposium on Volume Visualization.Tysons Corner,
USA, pp. 91-98.

Dodgson, N. A., 2002. Analysis of viewing zone of multi-view autostereoscopic displays. Proceedings of
SPIE, Vol. 4660, The International Society for Optical Engineering, pp. 254-265.

Dodgson, N. A., 2005. Autostereoscopic 3D displays. IEEE Computer, Vol. 38, No. 8, pp. 31-36.
Ebert, D. et al, 1996. Two-handed interactive stereoscopic visualization. Proceedings IEEE Visualization

96. San Francisco, USA, pp. 205-210.
Engel, K. et al, 2001. High-quality pre-integrated volume rendering using hardware-accelerated pixel

shading. Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware.
Los Angeles, USA, pp. 9-16.

Engel, K. et al, 2006. Real-time volume graphics. A K Peters, Wellesley, USA.

IADIS International Journal on Computer Science and Information Systems

 140

Gelder, A. V. and Kim, K., 1996. Direct volume rendering with shading via three-dimensional textures.
Proceedings ACM/IEEE Symposium on Volume Visualization, San Francisco, USA, pp. 23-30.

Hübner, T. et al, 2006. Multi-View Point Splatting. Proceedings Conference on Computer Graphics and
Interactive Techniques in Australasia and South-East Asia (GRAPHITE), Kuala Lumpur, Malaysia,
pp. 285-294, 499.

Hübner, T. and Pajarola, R. 2007. Single-Pass Multi-View Volume Rendering. Proceedings IADIS Multi
Conference on Computer Science and Information Systems, Lisbon, Portugal, pp. 50-58.

Jain, A. K., 1989. Fundamentals of Digital Image Processing. Prentice Hall, New Jersey, USA.
Kakimoto, M., 2005, Interactive Stereo Library (ISL). Joint Meeting on 3D Technology. London,

England, http://www.sgi.co.jp/solutions/visualization/isl.
Lee, Y. G. and Ra, J. B., 2005, Reduction of the distortion due to non-ideal lens alignment. Proceedings

of SPIE, Vol.5664, pp. 506-516.
McAllister, D. et al, 1993, Stereo Computer Graphics and other True 3D Technologies. Princeton

University Press, Princeton, USA.
McAllister, D., 2002, Encyclopedia of Imaging Science and Technology. John Wiley & Sons, Hoboken,

USA.
Meissner, M. et al, 1999, Enabling classification and shading for 3D texture mapping based volume

rendering using OpenGL and extensions. Proceedings IEEE Visualization 99. San Francisco, USA,
pp. 207-214.

Miniel, S. et al, 2004, 3D functional and anatomical data visualization on auto-stereoscopic display.
Proceedings EuroPACS-MIR, Trieste, Italy, pp. 375-378.

Möller, T. and Trumbore, B., 1997, Fast, minimum storage ray-triangle intersection. Journal of Graphic
Tools, Vol. 2, No. 1, pp. 21-28.

Pajarola, R. et al, 2004, Confetti: Object-space point blending and platting. IEEE Transactions on
Visualization and Computer Graphics 10, Vol. 5, pp. 598-608.

Pfister, H. et al, 2000, Surfels: Surface elements as rendering primitives. Proceedings ACM SIGGRAPH.
New Orleans, USA, pp. 335-342.

Portoni, L. et al, 2000, Real-time auto-stereoscopic visualization of 3D medical images. Proceedings of
SPIE, Vol. 3976, Medical Imaging 2000: Image Display and Visualization, pp. 37-44.

Ren, L. et al, 2002, Object space EWA surface splatting: A hardware accelerated approach to high
quality point rendering. Proceedings EUROGRAPHICS. Saarbrücken, Germany, pp. 461-470.

Schmidt, A. and Grasnick, A., 2002, Multiviewpoint autostereoscopic dispays from 4D-Vision GmbH.
Proceedings of SPIE, Vol. 4660, The International Society for Optical Engineering, pp. 212-221.

Zhang, Y. and Pajarola, R., 2006, GPU-accelerated transparent point-based rendering. ACM SIGGRAPH
Sketches & applications Catalogue.

Zhang, Y. and Pajarola, R., 2006, Single-Pass point rendering and transparent shading. In Proceedings
Symposium on Point-Based Graphics, pp. 37-48

Zwicker, M. et al, 2001, Surface splatting. In Proceedings ACM SIGGRAPH, Los Angeles, USA, pp.
371-378

