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ABSTRACT 
This paper presents a thorough evaluation of grid map based sensor fusion algorithms for mapping the 
environment of a mobile robot. Three physical sensors were used for creating the grid maps: a CCD 
camera, a set of ultrasonic sensors and a laser rangefinder. An adaptive fuzzy logic algorithm was 
compared to three logical sensor fusion algorithms. Results indicate the superiority of the adaptive fuzzy 
logic algorithm with a 0.075 confidence level. 
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1. INTRODUCTION 

The basic task of a mobile robot is to explore an unknown environment in order to perform 
complex tasks, e.g., navigation [Daniel et al., 2005], lawn mowing [2][Arkin et al., 2000], 
target tracking [Zhen et al., 2005], motion planning and execution [Luo and Kay, 1989]. 
Performing these tasks requires building accurate maps that describe the robot’s surroundings 
[24][Stepan et al., 2005]. 

The first step in building a map is to choose the appropriate representation model. There 
are several different techniques for representing the environment of a mobile robot, including 
configuration space [Lozano-Perez, 1981]; generalized cones [4][Brooks, 1982]; spherical 
octree [Chen, 1987]; and occupancy grid maps [Stepan, 2005]. In this research the grid map 
paradigm was used since it is a simple and fast technique, In the grid map model the 
environment is divided into discrete cells, each containing a binary value that indicates 
whether the area represented by the cell is Occupy (‘1’) or Empty (‘0’).  

An autonomous mobile robot must be equipped with several sensors in order to sense its 
surroundings. To complete the mapping mission, it is necessary to choose a method for 
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handling the multitude of sensors. In multi-sensor systems, the logical sensor paradigm is 
commonly used [19][Moravec and Elfes, 1985]. A logical sensor is an abstract definition of a 
sensor that can be used to provide a uniform framework for multisensory integration [Moravec 
and Elfes, 1985]. This approach enables to add sensors to the system without changing its 
whole concept. In this work several logical sensors were implemented.  

The next step towards an accurate environment mapping is to choose the appropriate 
fusion level and the desired sensor fusion algorithm. To enhance the accuracy of the maps the 
environmental information received from multiple sensors must be merged. Sensor fusion 
deals with synergetic merging of information from several different physical sensors [Adibi 
and Gonzales, 1992]. The fusion of the data or information from multiple sensors can take 
place at different levels of representation [Adibi and Gonzales, 1992] using different fusion 
algorithms. Signal level fusion refers to the combination of the signals of sensors to a signal 
that is usually of the same form as the original signal but of greater quality. Pixel level fusion 
can be used to increase the information content associated with each pixel in an image formed 
through a combination of multiple images, e.g., the fusion of a range image with a two-
dimensional intensity image adds depth information to each pixel in the intensity image. This 
can be useful in the subsequent processing of the image. Feature level fusion can be used to 
both increase the likelihood that a feature extracted from the information provided by a sensor 
actually corresponds to an important aspect of the environment, and as a means of creating 
additional composite features for the system to use. Symbol level fusion allows the information 
from multiple sensors to be effectively used together at the highest level of abstraction. 
Symbol level fusion may be the only means by which sensory information can be fused if the 
sensors are very dissimilar or refer to different regions of the environment. 

Several fusion systems involve the use of feedback [Srinivasan, 1986]. In these systems, 
the fusion algorithm feeds the decision to each of the logical sensors, but the sensors do not 
consider their previous values. In fusion systems with memory, the logical sensors consider 
their previous values [6][Cohen, 2005]. 

Several sensor fusion algorithms have been previously developed [18][Luo et al., 2001; 
Najjar and Bonnifait, 2005; Smith and Cheeseman, 1986]. The adaptive fuzzy logic (AFL 
[Cohen and Edan, 2004]) uses symbol level fusions and is considered as an algorithm that has 
memory and feedback. The AFL uses on-line logical sensory performance measures to 
determine the quality of the fused map. 

This paper presents a thorough evaluation of a system that uses an adaptive fuzzy 
algorithm developed by [Cohen and Edan, 2004] and compares it to logical fusion algorithms. 
To choose the best performing algorithms, a previously developed statistical evaluation 
method was used [Cohen et al., 2005]. The method is based on performance measures that 
measure the difference between the fused map and the environment truth map. The method 
first checks if the statistical difference between algorithms; then isolates the two best 
performing algorithms and finally picks the best performing algorithm. 
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2. SENSOR FUSION SYSTEM 

2.1  General 

The sensor fusion system is an expansion of previous work [Cohen, 2005] and includes three 
physical sensors: ultrasonic sensors, a CCD camera and a Laser rangefinder. The sensor fusion 
system uses three basic concepts: logical sensors, a binary grid map and performance 
measures. The logical sensor paradigm used to provide a uniform framework for multisensory 
integration [Henderson and Shilcrat, 1984[11]]. This approach enables to add sensors to the 
system without changing its whole concept. In this work, two additional logical sensors were 
added to the system easily due to the use of logical sensors. The grid map paradigm was 
chosen to present the environment perception due to its simple implementation and use 
[Moravec and Elfes, 1985][19]. Using the grid map representation, the environment is divided 
into a fixed size discrete grid. Each grid cell is assigned a binary value that indicates if that 
location is occupied by an obstacle or not. A value '0' represents an 'Empty' Cell, and a value 
'1' represents an 'Occupy' cell. Each logical sensor represents the environment using a unique 
grid map, and the different grid maps from all the logical sensors were fused into one map 
using fusion algorithms. The performance measures quantify the difference between two grid 
maps [Cohen, 2005]. The logical sensor performance measures were used in the fusion 
process and the sensor fusion performance measures were used in the algorithms' evaluation 
process. 

2.2 Information Flow 

The system includes N logical sensors representing k physical sensors. The logical sensors 
work asynchronously. The schematic description of the information flow is presented in 
Figure 1.  At each time step t, the ith logical sensor maps the environment using the physical 
sensor readings and creates a local observation grid map (LOGM), denoted by t

iy  
1, 2, ,i N= L . Let ci and di be the local observation grid map dimensions.  The map 

[ ] idict
iy ×
∈ 1,0 contains binary values each cell of that map. The values indicate whether the 

cell is 'Occupy' or 'Empty'.  

The system transfers each sensor's LOGM into a local binary grid map (LGM), denoted 
by Niut

i ,,2,1, L= . Let c and d be the local grid map dimension. The map [ ] dct
iu ×∈ 1,0  

contains binary values for each cell of that map. The LGM dimensions are identical for all 
logical sensors.  

There are two types of sensor algorithms: logical and adaptive. The algorithms differ in 
the memory and feedback properties; the adaptive algorithms use performance measures in the 
fusion process while the logical algorithms do not. 

For logical algorithms (Figure 1): 
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The LGM reaches the fusion center, where it yields the fused grid map (FGM) 
[ ] dctu ×∈ 1,00 , based on all the LGM ( )t

N
tttt uuuuu ,,,, 21 L= , using the fusion rule ( )⋅f  

as follows [Cohen, 2005]: 

( )tufut =0  
[1] 

For Adaptive algorithms (Figure 1): 

The performance measures of the logical sensors are calculated based on the previous local 

grid maps ( )1,,1
2,1

1
1,1 −−−=−− t

Nututututu L , of the logical sensors and the previous fused 

grid map defined as 1
0
−tu . The performance measures are denoted as 1−t

ip , 

where Ni ,,2,1 L= . The calculation of the performance measure depends on the fusion rule 
in the fusion center. A detailed description on the performance measures calculation process 
can be found in [Kapach, 2007]. An average value of the logical sensor performance measures 

),...,,(, 2,12,1
2

2,1
1

2,1 −−−−−−−− = tt
N

tttttt ppppp 2-t1,-t  is calculated based on 1-tp and 2-tp , 

where
2

21
2,1

−+−
=−−

t
ipt

iptt
ip , Ni ,...,2,1=  [Cohen, 2005].  

Both the local grid maps tu  and an average value of the logical sensor performance 
measures 2-t1,-tp  are transmitted to the fusion center. At the fusion center, based on all local 

grid maps tu  and the average value of the logical sensor performance measures 2-t1,-tp  the 

sensor fusion algorithm yields the fused grid map t
0u  at time step t, using the decision rule 

(.)f  as follows: 

( )2-t1,-ttt p,ufu =0  [2] 

The fused grid map, tu0  is fed back to all logical sensors ( tu ) to calculate the new 

performance measures ( tp ) [Cohen, 2005]. 

The following information flow is identical to both logical and adaptive algorithms. 
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At each time step t, a virtual global grid map (VGGM), denoted by [ ] batt ZZ ×∈ 1,0, 00 , 

expands the size of the fused grid map tu0  from dc×  to ba× , which is the full size. This is 

done by assigning zero values to all cells of the virtual global grid map tZ0 , except those 

which appear in tu0  (their values are as in the tu0  map). 

All the VGGM's are placed in a new map, the global grid map (GGM), denoted by 
[ ] baZZ ×∈ 1,0, . The VGGM's are places in the GGM according to the robot's new position 

along the path. The GGM is a ba×  matrix and is the output of the entire mapping process 
that represents the whole environment mapping along the robot's path.  
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u0
t

Virtual global grid map

p1
t-1,t-2 pi

t-1,t-2 pN
t-1,t-2

Fusion center

Feedback of the global binary m
ap

ty1
t
iy t

Ny

tu1
t
iu t

Nu

tu0

f

u0
tu0

t

Sensor NSensor iSensor 1

Global grid map
Z

tZ0

tZ0

p 1t-1
,t-

2

p it-1
,t-

2

p N
t-1

,t-
2

 

Figure 1. Information flow at time t – logical and adaptive algorithms 
(Adapted from Cohen, 2005) 

Data in black represents the logical algorithms information flow 
Data in red with the data in black represent the adaptive algorithms information flow 

2.3 Performance Measures 

These performance measures use the binary decisions about the cell's condition in the grid 
maps. Since the cell's condition is a binary value (a positive value indicates 'Occupy' and '0' 
indicates 'Empty'), there are four logical conditions for the difference between the two maps. 
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the performance measures are defined as the summation over all cells of the four logical 
conditions: Occupy – Occupy, Empty – Empty, Occupy – Empty and Empty – Occupy. 

Performance measures are used in two cases. In each case the calculation process is 
slightly different. In the first case, they are defined as 'logical sensor performance measures' 
and are used in the AFL algorithm, to quantify the difference between the logical sensor's 
maps and the fused map received as an output from the fusion algorithm. In the second case, 
they are defined as 'sensor fusion algorithm performance measures' and used in the sensor 
fusion evaluation process, to quantify the difference between the sensor fusion's map and the 
original truth map. 

2.3.1 Logical Sensor Performance Measures 

Four performance measures were defined to quantify the difference between each logical 
sensor’s map and the fused map. The values of each of the 4 pixels in both maps can be either 
‘True=1’ or ‘False=0’. Therefore, four possible options exist when conducting a comparison 
of an indexed pixel in the maps, resulting in four performance measures [Cohen, 2005]: OO – 
Number of ‘1’ in both maps divided by the number of ‘1’ in the fused map, EE – Number of 
‘0’ in both maps divided by the number of ‘0’ in the fused map, OE – Number of ‘0’ in the 
logical sensor’s map but ‘1’ in the fused map divided by the number of ‘0’ in the fused map, 
EO – Number of ‘1’ in the logical sensor’s map but ‘0’ in the fused map divided by the 
number of ‘1’ in the fused map. Ideally, OO and EE should be 1 and OE and EO should by 0. 
The following definitions are adapted from [Cohen, 2005]: 
Let: 

⎩
⎨
⎧
⎩
⎨
⎧

>
=

>
=

FGMincelljkOccupied

FGMincelljkEmpty
jkFGM

LGMincelljkOccupied

LGMincelljkEmpty
jkLGM

1

0

1

0

 [3] 

Where: 
LGMt(i)jk are cells in the sensor’s local grid map ( t

iu ) and 

FGMt
jk are cells in the fused grid map ( tu0 ) corresponding to the j row and k column 
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Then: 

[4] 
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[7] 

2.3.2 Sensor Fusion Performance Measures 

The sensor fusion performance measures are calculated by comparing each cell of the original 
truth map ( [ ] baORGORG ×∈ 1,0, ), with the corresponding cell on the global grid map 
(GGM) which is defined as Z in the information flow. The performance measures use the 
binary decisions about the cell's condition in the grid maps. The values of the sensor 
performance measures OO, EE, OE and EO were calculated by multiplying the relevant 
variables by the coefficients as detailed in Table 1. 
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Table 1. Coefficients for calculating the sensor fusion performance measures 

OccupyCoefficient 

( )
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ORG
tCoefficien

ORG
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tCoefficientCoefficien
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else
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EmptyCoefficient 
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ORG
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GGM

If Occupy Occupy a b Then
Empty Occupy

a b Occupyelseif Then
a b Occupy

a b OccupyEmpty
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a b OccupyEmpty
a b Occupy

= = ⋅

=

⋅ −
≤ ≤

⋅ −

⋅ −
=

⋅ −

⋅ −
=

⋅ −  

Where a and b are defined as the global grid map’s 
dimensions. 
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Let: 

0
0

0
0
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[8] 

Where: 
GGMjk are cells in the global grid map (Z) and 
ORGjk are cells in the original map (ORG) corresponding to the j row and k column 
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[12] 

And  
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[ ]
ORGGGMtCoefficien OOOccupyOO ⋅=  [13] 

[ ]
ORG

E
GGM

EtCoefficienEmptyEE ⋅=  [14] 

[ ]
ORG

E
GGM

OtCoefficienEmptyOE ⋅−= ⎟
⎠
⎞⎜

⎝
⎛1  [15] 

[ ]
ORGGGM

E OtCoefficienOccupyEO ⋅−= ⎟
⎠
⎞⎜

⎝
⎛1  [16] 

2.4 Sensor Fusion Algorithms 

Three logical algorithms were compared to an adaptive algorithm. In the logical algorithms the 
logical sensor distinguishes between two basic states, Occupy and Empty. These algorithms 
present different versions of Identify the obstacle by at least n logical sensors: Logical OR 
(n=1), MOST (n>N/2) and logical AND (n=N), where N is the total number of logical sensors 
in the system [Cohen, 2005; Blum et al., 1997; Klein, 1993]. 

In the adaptive algorithm, each time step t, the ith logical sensor creates its local grid map 
(i.e., t

iu ). The fused map (i.e., tu0 ) is built using the average value of the performance 
measures [Cohen, 2005] which are recalculated online. An adaptive fuzzy logic algorithm was 
selected due to its superior performance as indicated in previous analyses [Cohen, 2005] The 
AFL algorithm receives on-line the four performance measures of each logical sensor and 
each logical sensor local grid map as inputs and calculates the binary fused map using fuzzy 
logic.  The AFL algorithm that was evaluated was the algorithm that achieved best 
performances according to.  

The AFL algorithm uses logical sensors performance measures as fuzzy variables with 
three fuzzy sets: High, Average and Low. Each fuzzy set member is associated with a 
trapezoid membership function. The membership function evaluates the degree of membership 
of each variable value of the respective fuzzy set member [Cohen, 2005]. The fuzzy sets 
values and membership function of the fuzzy variables of the best performing algorithm 
according to Cohen’s evaluation (denoted as 1010 in [Cohen, 2005]) are presented in Table 2. 

Table 2. Fuzzy set values of the fuzzy variables [Cohen, 2005] 

Fuzzy sets Fuzzy variable 
Low Avg. High 

OLGMOFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,

1 
ELGMEFGM

t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,
1 

OLGMEFGM
t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,

1 
ELGMOFGM

t-1,t-2(i) 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,
1 
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For each logical sensor at every time stamp t, two fuzzy output variables are calculated: 
t
iOccupy  and t

iEmpty , where Ni ,,2,1 L=  and N is the total number of the logical 
sensors. These output fuzzy variables also have three fuzzy sets: High, Average and Low. 
Each fuzzy set member is associated with a trapezoid membership function. The fuzzy sets 
values of the output fuzzy variables are presented in Table 3.  

Table 3. Fuzzy sets values of the fuzzy output variables [Cohen, 2005] 

Fuzzy sets Fuzzy variable 
Low Avg. High 

Occupy 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1 
Empty 0,0,0.3,0.45 0.4,0.45,0.55,0.6 0.55,0.7,1,1 

The fuzzy output variables are calculated using twelve If-Then rules presented in  

Table 4. 
 

Table 4. If-Then rules [Cohen, 2005] 

 Fuzzy variables input Fuzzy variables 
output 

Rule OLGMOFGM
t-1,t-2(i) ELGMEFGM

t-1,t-2(i) OLGMEFGM
t-1,t-2(i) ELGMOFGM

t-1,t-2(i) Occupy Empty 
1 High    High  
2 Avg.    Avg.  
3 Low    Low  
4   High  Low  
5   Avg.  Avg.  
6   Low  High  
7  High    High 
8  Avg.    Avg. 
9  Low    Low 
10    High  Low 
11    Avg.  Avg. 
12    Low  High 
 

The rules are defuzzified using the Mamdani inference with centroid method [Mamdani 
and Assilian, 1975] and are evaluated to determine the final value of the t

iOccupy  and  
t
iEmpty  final value [Cohen, 2005]. 

The fused map cells are binary, where '1' indicates that the cell is 'Occupy' and '0' indicated 
that the cell is 'Empty'. The decision rule for the fused map cells is based on the summation of 
the logical sensor's t

iOccupy  and t
iEmpty  final values. For all the corresponding cells in the 

logical sensor's map that are '0', their values are summed. For all the corresponding cells in the 
logical sensor's map that are '0', their t

iOccupy  values are summed. If the Occupy sum is 
greater than the Empty sum, the cell in the fused map is set to '1', otherwise – '0'. The pseudo-
code for fused map decision rule is presented in Table 5: 

 
 



IADIS International Journal on Computer Science and Information Systems 

 24

Table 5. Pseudo code for fused map decision rule 

Adaptive fuzzy logic decision rule 

( )

( )

( )

0

0

1:
1:

1:
, 0

}

, 1

, 0

t
i

t t t
i

t t t
i

t t

t

t

for x MapSizeX
for y MapSizeY

for i N
if u x y

Empty Empty Empty
else

Occupy Occupy Occupy

if Occupy Empty
u x y

else
u x y

=
=
=

=

= +

= +

>

=

=  

3.  EXPERIMENTS 

3.1 Experimental Setup 

The experiment consisted of a mobile robot (Active Media 
Pioneer 2-AT) equipped with two sets of eight ultrasonic 
sensors in front and on the back, a SICK laser scanner 
mounted on top of the robot and a SONY CCD camera 
mounted on the laser scanner. Only the six front ultrasonic 
sensors were used, so all the sensors scan the area in front of 
the robot. 

The experiment took place in a controlled laboratory 
environment where a special setup was constructed (Figure 
2). The experiment setup consisted of a 5m long black path 
(width 2.5m). Five similar red cylindrical obstacles were 
placed along the path (Ø25 cm, 50 cm height). The logical sensors created different maps, 
because not all obstacles were always noticeable due to different properties of the physical 
sensors. These differences caused the logical sensors to disagree. To increase disagreement 
between logical sensors two types of decoys were set alongside the robot's path [Cohen, 
2005]. 

The decoys were made of light brown rug. The first type of decoy was less than 6 cm. in 
width and length; the size of the second type was around 30 cm. (Figure 3). The decoys 
location was randomly change between repetitions. 

 
Figure 2. Pioneer 2-AT 
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Figure 3. Experimental setup photographs 

3.2 Logical Sensors Implementation 
Total of seven logical sensors were used in the experiment. Two logical sensors were 
generated using the ultrasonic data denoted as US1 and US2 using the logical OR algorithm 
and Probabilistic-Approach algorithm respectively [Ribo and Pinz, 2001]. Two logical sensors 
were generated using the laser data denoted as LASER1 and LASER2. The first one used the 
entire 180° laser scanning range, while the second one used only every third angle reading. 
LASER1 and LASER2 were implemented using geometrical transformations from the data 
received from the laser sensor and the robot’s location received from the robots encoders. 
Three logical sensors were generated from the image grabbed by the camera denoted as 
CAM1, CAM2 and CAM3. Each of the logical sensors aimed to identify different types of 
objects [Cohen, 2005]. CAM1 aimed to identify the obstacles, CAM2 to identify the obstacles 
and the first type of decoys and CAM3 to identify the obstacles and the second type of decoys. 
The camera’s logical sensors were implemented using image processing algorithms [Kapach, 
2007]. However, the algorithms were not optimized and their performances highly depended 
on the lighting conditions, which varied along the path due to external conditions (e.g., 
shadows from ceilings and from obstacles in the room). Figure 4 presents the mapping results 
from the seven logical sensors in the controlled laboratory conditions with the real world map 
as the reference. Mapping results from all experiments and repetitions can be found in 
[Kapach, 2007]. 
 

Real world 
map 

US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3 

    
 

   

Figure 4. An example of logical sensors mapping and the real world map 

Obstacles 
1st type decoys 

2nd type decoys 
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3.3 Experimental Procedure  
During the experiment, the robot moved forward at constant velocity (0.1 m/sec) and scanned 
the area in from of it using three physical sensors. The robot traveled 400 ± 5 cm and 
performed 38 scanning cycles. To eliminate influence of the robot localization problem [Lin et 
al., 2003] the robot moved only forward. To ensure that the robot traveled straight, the robot 
was placed at the beginning of the path and a laser pointer mounted on top of the robot marked 
the starting point on a calibration board placed at the end of the path. The robot’s exact 
location was changed until the point on the calibration board matched the exact beginning 
point. At the end of the experiment the robot’s location was measured again using the laser 
and the calibration board and if the robot diverged more than 4cm the repetition was not 
considered in the analysis. To enhance image processing performance, the only light source 
was a 300W spot placed behind the camera and a sheet of aluminum foil was placed in the 
back of the spot to prevent light reflection. The experimental software was written using a 
Visual C++ compiler and a dedicated API (ARIA 2.4 from Active Media [Kapach, 2007]). 

3.4 Experimental Design 
Seven different experiments were conducted (Table 1). The experiments differed in the 
environmental and logical sensors conditions. Malfunctions were created artificially by setting 
logical sensors to empty, full and shifting positions by a constant value. Lighting conditions 
were changed in the third and seventh experiment. Each experiment was repeated seven times. 
Experiment’s repetitions were performed under the same conditions with natural variations 
such as lightning conditions, shadows and time differences. The motivation for choosing the 
different conditions for experiments is explained in part III. In each experiment, environment 
mapping was achieved using the four different sensor fusion algorithms, resulting in a total of 
196 environmental mappings (4 sensor fusion algorithms X 7 Experiments X 7 repetitions). 
Figure 5 presents the algorithms’ map results from experiment 1, first repetition and the 
corresponding real world map. Four sensor fusion performance measures were calculated from 
every experiment and for each fusion algorithm map (using equations [13]-[16]). 

Table 6. Experimental design for statistical evaluation experiment 

Exp. US1 US2 LASER1 LASER2 CAM1 CAM2 CAM3 Comments 

1 Empty Full Regular 
Algorithm 

Regular 
Algorithm 

Shift: 
X=X+40cm
Y=Y+40cm

Shift: 
X=X-40cm 
Y=Y-40cm 

 

2 Full R
eg

ul
ar

 
A

lg
or

ith
m

 

Empty Regular 
Algorithm 

Regular 
Algorithm 

Shift: 
X=X-40cm 
Y=Y-40cm 

Empty  

3 Empty Full Regular 
Algorithm 

Regular 
Algorithm 

Regular 
Algorithm 

Lights off for 
cycles 15-end 

4 Full Empty Regular 
Algorithm 

Regular 
Algorithm Full  

5 Full Empty 
Shift: 

X=X+20cm 
Y=Y-40cm 

Full 
Shift: 

X=X-40cm 
Y=Y+60cm 

 

6 Empty Full Regular 
Algorithm 

Shift: 
X=X+60cm
Y=Y+60cm

Full  

7 

R
eg

ul
ar

 A
lg

or
ith

m
 

Regular 
Algorithm 

R
eg

ul
ar

 A
lg

or
ith

m
 

Regular 
Algorithm 

Regular 
Algorithm 

Regular 
Algorithm 

Regular 
Algorithm 

Lights off for 
cycles 15-end 
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 Experiment 3, first repetition Experiment 4, third repetition 
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3 
AdpWA

4 
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Figure 5. Map results from different experiments 

4.  ANALYSIS AND RESULTS 

The evaluation method [Cohen et al., 2005] aimed to: 1) ensure that the experiments are 
different enough in order to guarantee that the results regarding the best algorithm are not 
specific for the specific dataset, 2) confirm that enough repetitions were done in each 
experiment and 3) select the best performing algorithm. 

4.1 Experimental Design 

To ensure the results are not specific for the specific dataset the following steps were 
conducted to ensure that experiments are different and that there are a sufficient number of 
different repetitions [Cohen et al., 2005]. 

4.1.1 Different Experiments   
For each experiment between every two repetitions, each logical sensor’s map from one 
repetition is subtracted from all other logical sensor maps from the other repetitions and saved 
as an absolute value [Cohen et al., 2005]. For example, LS1 map from experiment 1, 
repetition 1 is compared to LS1 map from experiment 2 and all its repetitions, experiment 3 
and all its repetitions and so on. The number of cells different than ‘0’ (signed cells) is saved 
for each comparison. For 7 LS, 7 repetitions and 7 experiments, this results in 7,203 subtracted 
maps. For each comparison, the worst difference of all logical sensors is saved [Cohen et al., 
2005]. 

4.1.2 Different Repetitions 
For each experiment, each logical sensor’s map is subtracted from all its repetitions in pairs 
and saved as an absolute value [Cohen et al., 2005]. For example, LS1 map from the 
experiment 1 is subtracted from LS1 maps from all other repetitions. This is conducted for all 
LS, and the number of cells different than ‘0’ (signed cells) is saved for each comparison. For 
7 LS, 7 repetitions and 7 experiments, this results in 1,029 comparisons. For each comparison, 
the worst difference is saved, e.g., the maximum number of signed cells [Cohen et al., 2005]. 

4.1.3 Volume of Overlap Region 
This measure is an indicator that the experiments and repetitions are indeed different.  This 
measure evaluates the overlap of two populations (e.g., experiments and repetitions) and 
should be as negative as possible [Tin and Mitra, 2002]. If the volume is not negative, the 
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experiments are not different enough and more experiments need to be performed. The volume 
is calculated using the minimum and maximum number of signed cells from all the 
comparisons between the experiments and repetitions. The volume is negative as equation [17] 
shows, implying that the experiments are different and repetitions are similar: 
 

( ) ( )
( ) ( )
5136, 756 877, 78

0.0243
5136, 756 877, 78

MIN MAX
VOLR

MAX MIN

−
= = −

−
 [17] 

4.1.4 Number of repetitions 
The number of repetitions is based on a t-test detailed in [Cohen et al., 2005] and is calculated 
for α=0.05 and β=0.2. For each performance measure, the number of repetitions was 
calculated, and the final number was taken as the maximum number from all the performance 
measures. S (standard deviation) for each performance measure was taken as the upper bound 
of the standard deviation for this performance measure from all the experiments. ∆ is chosen 
to be 20% from the average upper bound and was taken for each performance measure 
separately too. Based on the results (Table 7), the largest R is for the OO measure; this results 
in six necessary repetitions. Since each experiment has already seven repetitions, no additional 
repetitions were required. 

Table 7. R calculations for each performance measure 

 S ∆ R 
OO 0.0371 0.041 6 
EE 0.0221 0.1459 1 
OE 0.0011 0.1471 1 
EO 0.0625 0.15 2 

4.2 Statistical Analysis 

To find the best performing algorithm a statistical analysis that includes three non-parametric 
tests was conducted [Cohen et al., 2005]. The first test is the Friedman's test [Hollander and 
Wolfe, 1973], that checks whether the algorithms performances are considered different. 
Friedman's test is performed separately for each performance measure in every experiment. In 
this test, the algorithms are ranked from the least (rank=1) to the largest (rank=4) for every 
repetition. The test statistic uses the rank differences. The second step is the multiple 
comparison's procedure [Hollander d Wolfe, 1973] that picks the best performing couple of 
algorithms. The multiple comparisons’ procedure uses the sum of ranks for each algorithm to 
divide the algorithms into homogenous subgroups. Two algorithms belong to the same 
subgroup if the difference between the sums of their ranks does not exceed a predefined 
critical value. The critical value is taken from table A.17 in [Hollander and Wolfe, 1973]. The 
significant value for this test is derived from the number of repetitions and the number of the 
compared algorithms, and appears in the same table. The third and final step is the sign test 
[Hollander and Wolfe, 1973] that picks the best performing algorithm. The sign test checks the 
significance of difference between the medians of the two algorithms. If the p-value of this test 
is smaller than the desired significance level, this proves that one algorithm is superior to the 
other. 
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4.2.1 Friedman’s test 
Friedman’s test [Hollander and Wolfe, 1973] was performed to check if there is a 
significant difference between the algorithms. The null hypothesis is that the algorithms 
perform similar in terms of the median, and there is no difference between them. Friedman’s 
test was performed for each performance measure for every experiment separately. In this 
test, the algorithms are ranked from the least (rank=1) to the largest (rank=4) for every 
repetition. The test statistic uses the rank differences. P-values for all 7 experiments for all 
seven experiments are presented in Table 8. The very small p-values imply a difference 
between algorithms. 

Table 8. Friedman's test results 

Exp. 
Sensor fusion 
performance 
measures 

p - 
value  Exp. 

Sensor fusion 
performance 
measures 

p - 
value 

OO 0.0002  OO 0.0002 
EE 0.0001  EE 0.0001 
OE 0.0003  OE 0.0003 1. 

EO 0.0002  

5. 

EO 0.0004 
OO 0.0001  OO 0.0005 
EE 0.0001  EE 0.0001 
OE 0.0001  OE 0.0002 2. 

EO 0.0002  

6. 

EO 0.0002 
OO 0.0004  OO 0.0001 
EE 0.0001  EE 0.0003 
OE 0.0002  OE 0.0004 3. 

EO 0.0005  

7. 

EO 0.0001 
OO 0.0003  
EE 0.0006  
OE 0.0005  4. 

EO 0.0005  

 

 

4.2.2 Multiple-comparison procedure 
Friedman’s multiple-comparison procedure [Hollander and Wolfe, 1973] uses the sum of 
ranks for each algorithm to divide the algorithms into homogenous subgroups. Two 
algorithms belong to the same subgroup if the difference between the sums of their ranks 
does not exceed a predefined critical value. The critical value is taken from table A.17 in 
[Hollander and Wolfe, 1973]. The significance value for this test is derived from the number 
of repetitions and the number of the compared algorithms, and appears in the same table. 
For four algorithms and seven repetitions, algorithms that have any difference smaller than 
14 between their sums of ranks belongs to the same subgroup. A close look at the results 
indicates that in most cases MOST and AFL algorithms belong to the same best subgroup 
and thus they are considered the two best performing algorithms. 

4.2.3 Sign test 
The last step is to choose the best performing algorithm between MOST and AFL. This is 
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done using the sign test [Hollander and Wolfe, 1973]. The sign test checks the significance 
of difference between the medians of the two algorithms. If the p-value of this test is smaller 
than the desired significance level, this proves that one algorithm is superior to the other. 
AFL was better than MOST in 12 out of 28, in 4 cases MOST outperformed AFL and in 12 
cases there was no difference between the algorithms (Table 9). The p-value corresponding 
12 out of 28 cases is 0.075, implying that the AFL algorithm is the best, as presented in 
Table 10, which was generated using SPSS software for windows release 12.0.0. This 
evaluation corresponds to a qualitative evaluation achieved from using visual representation 
of the generated maps for the different sensor fusion algorithms. 

Table 9. Sign test data 

Table 10. Sign test results 

 Frequencies 
 

    N 
Negative 
Differences(a) 12

Positive 
Differences(b) 4

Ties(c) 12

MOST - AFL 

Total 28
 Test Statistics(b) 
 

  MOST - AFL
Exact Sig. (2-tailed) .077(a)

a  Binomial distribution used. 
b  Sign Test 

a  MOST < AFL 
b  MOST > AFL 
c  MOST = AFL 

 

 

Sensor fusion performance measures 
OO EE OE EO 

Experiment 
environmental 

conditions MOST AFL MOST AFL MOST AFL MOST AFL 
1. Ties Ties Ties Ties Ties Ties Ties Ties 
2. 0 7 0 7 0 3 0 7 
3. 0 7 0 7 3 4 0 7 
4. Ties Ties Ties Ties Ties Ties Ties Ties 
5. 7 0 7 0 7 0 7 0 
6. Ties Ties Ties Ties Ties Ties Ties Ties 
7. 0 7 1 6 1 6 1 6 

Total 1 3 1 3 1 3 1 3 
Note: The values in this table indicate the number of times each algorithm outperforms the opponent. 
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5.  CONCLUSIONS 

This paper presents a thorough evaluation of three logical sensor fusion algorithms and an 
adaptive fuzzy logic algorithm in an experimental setup including three different logical 
sensors. Results indicate that the best performing algorithm is the adaptive fuzzy logic with 
0.075 confidence level corresponding to previous results [Cohen et al., 2005]. Future research 
is aimed at evaluating the performances of a new sensor fusion algorithm that uses non-binary 
grid maps [Kapach, 2007].  
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