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ABSTRACT 

When learning Bayesian network structures from sample data, an important issue is how to evaluate the 
goodness of alternative network structures. Perhaps the most commonly used model (class) selection 
criterion is the marginal likelihood, which is obtained by integrating over a prior distribution for the 
model parameters. However, the problem of determining a reasonable prior for the parameters is a highly 
controversial issue, and no completely satisfying Bayesian solution has yet been presented in the non-
informative setting. The normalized maximum likelihood (NML), based on Rissanen's information-
theoretic MDL methodology, offers an alternative, theoretically solid criterion that is objective and non-
informative, while no parameter prior is required. It has been previously shown that for discrete data, this 
criterion can be computed in linear time for Bayesian networks with no arcs, and in quadratic time for 
the so called Naive Bayes network structure. Here we extend the previous results by showing how to 
compute the NML criterion in polynomial time for tree-structured Bayesian networks. The order of the 
polynomial depends on the number of values of the variables, but neither on the number of variables 
itself, nor on the sample size1. 
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1. INTRODUCTION 

We consider the problem of learning a Bayesian network structure, based on a sample of data 
collected from the domain to be studied. We focus on the score-based approach, where first a 
model selection score is defined, yielding a goodness criterion that can be used for comparing 
different model structures, and any search method of choice can then be used for finding the 
structure with the highest score. 

In this paper we study the problem of choosing and computing an appropriate  model 
selection criterion.  Naturally, any reasonable criterion must possess some desirable optimality 
properties. For a Bayesian, the most obvious choice is to use the model structure posterior, 
given the data and some model structure prior that has to be fixed in advance. Assuming a 
uniform prior over the possible structures, this leaves us with the  

marginal likelihood, which is the most commonly used criterion for learning Bayesian 
networks.  Calculation of the marginal likelihood requires us to define a prior distribution over 
the parameters defined by the model structure under consideration.  

Under certain assumptions, computing the marginal likelihood is then straightforward, see 
e.g. [1, 2]. Perhaps somewhat surprisingly, determining an adequate prior for the model 
parameters of a given class, in an objective manner has turned out to be a most difficult 
problem. 

The uniform parameter prior sounds like the obvious candidate for a non-informative prior 
distribution, but it is not transformation-invariant, and produces different marginal likelihood 
scores for dependence-equivalent model structures [2].  This is due to the fact that there is no 
objective way of defining uniformity, but any prior can be uniform at most with respect to a 
chosen representation.  The problem of transformation-invariance can be remedied by using 
the prior distribution suggested in [3], but this still leaves us with a single parameter, the 
equivalent sample size, the value of which is highly critical with respect to the result of the 
model structure search as demonstrated in [4]. Alternatively, one might resort to using the 
transformation-invariant Jeffreys prior, but although it can in the Bayesian network setting be 
formulated explicitly [5], computing it appears to be quite difficult in practice. 

For the above reasons, in this paper we take the alternative approach of using the 
information-theoretic  normalized maximum likelihood (NML) criterion [6, 7] as the model 
selection criterion. The NML score is – under certain conditions – asymptotically equivalent 
to the marginal likelihood with the Jeffreys prior [7], but it does not require us to define a prior 
distribution on the model parameters. Based on the data at hand only, it is fully objective, non-
informative and transformation-invariant. What is more, the NML distribution can be shown 
to be the optimal distribution in a certain intuitively appealing sense. It may be used for 
selection of a model class among very different candidates. We need not assume a model 
family of nested model classes or the like, but we may compete against each other any types 
of model classes for which we can compute the NML distribution. Consequently, the NML 
score for Bayesian networks is of great importance both as a theoretically interesting problem 
and as a practically useful model selection criterion. 

Although the NML criterion yields a theoretically very appealing model selection criterion, 
its usefulness in practice depends on the computational complexity of the method. In this 
paper we consider Bayesian network models for discrete data, where all the conditional 
distributions between the variables are assumed to be multinomial. For a single multinomial 
variable (or, an empty Bayesian network with no arcs), the value of the NML criterion can be 
computed in linear time [8], and for the Naive Bayes structure in quadratic time [9]. In this 
paper we consider more general forest-shaped network structures, and introduce an algorithm 
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for computing the NML score in polynomial time – where the order of the polynomial 
depends on the number of possible values of the network variables. Although the problem of 
computing the NML for general Bayesian network structures remains unsolved, this work 
represents another step towards that goal. 

The paper is structured as follows. In Section 2 we briefly review some basic properties of 
the NML distribution. Section 3 introduces the Bayesian Forest model family and some 
inevitable notation. The algorithm that calculates the NML distribution for Bayesian forests is 
developed in Section 4 and summarized in Section 5. We close with the concluding remarks of 
Section 6. 

2. PROPERTIES OF THE NML DISTRIBUTION 

The NML distribution, founding on the Minimum Description Length (MDL) principle,  has 
several desirable properties. Firstly, it automatically protects against overfitting in the model 
class selection process. Secondly, there is no need to assume that there exists some underlying 
“true” model, while most other statistical methods do: in NML the model class is only used as 
a technical device to describe the data, not as a hypothesis. Consequently, the model classes 
amongst which to choose are allowed to be of utterly different types; any collection of model 
classes may be considered as long as the corresponding NML distributions can be computed. 
For this reason we find it important to push the boundaries of NML computability and develop 
algorithms that extend to more and more complex model families.  

NML is closely related to Bayesian inference. However, there are some fundamental 
differences, the most important being that NML is not dependent on any prior distribution, it 
only uses the data at hand. For more discussion on the theoretical motivations behind NML 
and the MDL principle see, e.g., [7, 10, 11, 12, 13, 14]. In the following, we give the 
definition of the NML distribution and discuss some of its theoretical properties. 

2.1 Definition of a Model Class and Family 

Let xn be a data sample of n outcomes, where each outcome xj is an element of some space of 
observations X. The n-fold Cartesian product X x … x X  is denoted by Xn, so that xn Є Xn. 
Consider a d-dimensional real set Θ, where d is some positive integer. A class of parametric 
distributions indexed by the elements of Θ is called a model class. That is, a model class M is 
defined as  
 

                                                        { ( | ) : },M P θ θ= ⋅ ∈Θ                                                 (1) 
     
and the set Θ is called the parameter space.  
Consider an e-dimensional real set Φ, where e is some positive integer. Define a set F by 
 

                                                          { ( ) : }.F M φ φ= ∈Φ                                                  (2) 
 
The set F is called a model family, and each of the elements M(φ) is a model class. The 
associated parameter 
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space is denoted by Θφ. The model class selection problem can now be defined as a process of 
finding the parameter vector φ, which is optimal according to some pre-determined criteria.  

2.2 The NML Distribution 

One of the most theoretically and intuitively appealing model class selection criteria is the 
Normalized Maximum Likelihood. Denote the parameter vector that maximizes the likelihood 
of data xn for a given model class M(φ)  by: 

                                              

ˆ( , ( )) { ( | )}.arg max
n nx M P x

φθ

θ φ θ
∈Θ

=
                                 (3) 

The normalized maximum likelihood (NML) distribution [6] is now defined as 

                                          

| ˆ( | ( , ( )))( | ( )) ,
( ( ), )

n n
n

NML
P x x MP x M

C M n
θ φφ

φ
=

                            (4) 
where the normalizing term C(M(φ), n) in the case of discrete data is given by 
 

                                          

ˆ( ( ), ) ( | ( , ( ))),
n n

n n

y X

C M n P y y Mφ θ φ
∈

= ∑
                             (5) 

and the sum goes over the space of data samples of size n. If the data is continuous, the sum is 
replaced by the corresponding integral. From this definition, it is immediately evident that 
NML is invariant with respect to any kind of parameter transformation, since such 
transformation does not affect the maximum likelihood. 
In the MDL literature – which views the model class selection problem as a task of 
minimizing the resulting code length – the minus logarithm of (4) is referred to as the 
stochastic complexity of the data xn given model class M(φ) and the logarithm of the 
normalizing sum  log C(M(φ), n)  is referred to as the parametric complexity or (minimax) 
regret of M(φ). 
The NML distribution (4) has several important theoretical optimality properties. The first one 
is that NML provides a unique solution to the minimax problem posed in [6], 
 

                                                
ˆ

ˆ( | ( , ( )))min max log ˆ( | ( ))n

n n

nP x

P x x M
P x M

θ φ
φ                                  (6) 

 
i.e., the minimizing distribution is the NML distribution, and it assigns a probability to any 
data that differs 
from the highest achievable probability within the model class – the maximum likelihood – by 
the constant factor C(M(φ), n). In this sense, the NML distribution can be seen as a truly 
uniform prior, with respect to the data itself, not its representation by a model class M(φ). In 
other words, the NML distribution is the minimax optimal universal model. The term universal 
model in this context means that the NML distribution represents (or mimics) the behaviour of 
all the distributions in the model class M(φ). Note that the NML distribution itself does not 
have to belong to the model class, and typically it does not. 
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A related property of NML was proven in [12]. It states that NML also is the unique solution 
to 

                                                                (7) 
 
where the expectation is taken over xn with respect to g and the minimizing distribution q 
equals g. Also the maximin expected regret is given by log C(M(φ), n). 

3. THE BAYESIAN FOREST MODEL FAMILY 

We assume m variables X1, …, Xm with given value cardinalities K1, …, Km. We further 
assume a data matrix 
xn = (xji) Є Xn,  j Є {1, …, n} and i Є {1, …, m}, given. 

A Bayesian network structure G encodes independence assumptions such, that each 
variable Xi is represented as a node and the joint probability distribution breaks down into 
probability distributions for each such node conditioned on its parent set. We define a 
Bayesian forest to be a Bayesian network structure G on the node set X1, …, Xm which assigns 
at most one parent Xpa(i) to any node Xi. Consequently, a Bayesian tree is a connected Bayesian 
forest and a Bayesian forest breaks down into component trees, i.e. connected subgraphs. The 
root of each such component tree lacks a parent, in which case we write that pa(i) is the empty 
set. The parent set of a node Xi thus reduces to a single value 

( ) {1, , 1, 1, , , }.pa i i i m∈ − + ∅K K  
The corresponding model family F can be indexed by the network structure G which is 

associated with an integer according to some enumeration of all Bayesian forests on X1,…,Xm. 
 

                                                        { ( ) :  is a forest}BFF M G G=                                     (8) 
 
Given a forest model class M(G), we index each model by a parameter vector θ in the 
corresponding parameter space ΘG. 
 
            

( ){ ( ) :  0,  1,  1, , ,  1, , ,  1, , },G ikl ikl ikl pa i i
l

i m k K l Kθ θ θ θΘ = = ≥ = = = =∑ K K K
 

(9) 
where we define : 1K∅ =  in order to unify notation for root and non-root nodes. Each such θikl 
defines a probabilty  
 

                                                 ( )( | ,  ( ),  )ikl i pa iP X l X k M Gθ θ= = =
                        (10) 

 
where we interpret 1X ∅ =  as a null condition. 
The joint probability distribution that the model M(G, θ) assigns to a data vector x=(x1,…,xm) 
becomes 
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( )( ) ( ) , ,

1 1

( | ( ), ) ( | ,  ( ),  ) .
pa i i

m m

i i pa i pa i i x x
i i

P x M G P X x X x M Gθ θ θ
= =

= = = =∏ ∏
     (11) 

For a sample xn=(xji) of n vectors xj we define the corresponding frequency vectors 

   

( )

, ( )
1

: |{ :  and } |   and  : |{ : } | .
pa iK

ikl ji j pa i il ji ikl
k

f j x l x k f j x l f
=

= = = = = = ∑
                (12) 

 
By definition for any component tree root Xi we have fil=fi1l. The probability assigned to an 
i.i.d. sample xn can then be written as 

                                          

( )

1 1 1

( | ( ),  ) ,
pa i i

ikl

K Km
fn

ikl
i k l

P x M G θ θ
= = =

= ∏ ∏ ∏
                                   (13) 

which is maximized at  

                                                        ( ),

ˆ ( ,  ( )) ,n ikl
ikl

pa i k

fx M G
f

θ =
                                     (14) 

where we define ,1 :f n∅ = . The maximum data likelihood thereby is 

                                     

( )

1 1 1 ( ),

ˆ( | ( , ( ))) .
ikl

pa i i
fK Km

n n ikl

i k l pa i k

fP x x M G
f

θ
= = =

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∏ ∏ ∏

                 (15) 

4. CALCULATING THE NML DISTRIBUTION 

The goal is to calculate the NML distribution PNML(xn|M(G)) defined in (4). This consists of 
calculating the maximum data likelihood (15) and the normalizing term C(M(G), n) given in 
(5). The former involves frequency counting – one sweep through the data – and 
multiplication of the appropriate values. This can be done in time ( )( )i p a ii

O n K K+ ∑ . The latter 
involves a sum exponential in n, which clearly makes it the computational bottleneck of the 
algorithm. 

Our approach is to break up the normalizing sum in (5) into terms corresponding to 
subtrees with given frequencies in either their root or its parent. We then calculate the 
complete sum by sweeping through the 

graph once, bottom-up. The exact ordering will be irrelevant, as long as we deal with each 
node before its parent. Let us now introduce the needed notation. 

Let G be a given Bayesian forest. In order to shorten our notation, from now on we no 
longer write out the model class M(G), as it may be assumed fixed. We thus write e.g. P(xn|θ), 
meaning P(xn|θ, Μ(G)). When in the following we restrict to subsets of the attribute space, we 
implicitly restrict the model class accordingly, e.g. in (16) below, we write 

( ) ( )
ˆ( | ( ) )n n

s u b i s u b iP x xθ as a short notation for ( ) ( ) ( )
ˆ( | ( ) , ( ) )n n

s u b i s u b i s u b iP x x M Gθ . 
For any node Xi denote the subtree rooting in Xi by Gsub(i) and the forest built up by all 

descendants of Xi by Gdsc(i). The corresponding data domains are Xsub(i) and Xdsc(i), respectively. 
Denote the partial normalizing sum over all n-instantiations of a subtree by 
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                                              ( ) ( )

( ) ( )
ˆ( ) : ( | ( ))

n n
sub i sub i

n n
i sub i sub i

x X

C n P x xθ
∈

= ∑
                            (16) 

 
and for any vector xi

n Є Xi
n with frequencies fi=(fi1,…,fiKi) we define   

 

                                     ( ) ( )

( ) ( )
ˆ( | ) : ( , | ( , ))

n n
dsc i dsc i

n n n n
i i dsc i i dsc i i

x X

C n f P x x x xθ
∈

= ∑
                   (17) 

 
to be the corresponding sum with fixed root instantiation, summing only over the attribute 
space spanned by the descendants of Xi. Note, that we condition on fi on the left-hand side, and 
on xi

n on the right-hand side of the definition. This needs to be justified. Interestingly, while 
the terms in the sum depend on the ordering of  xi

n, the sum itself depends on xi
n only through 

its frequencies fi. To see this pick any two representatives xi
n and yi

n of fi and find, e.g. after 
lexicographical ordering of the elements, that 
 

                          ( ) ( ) ( ) ( ) ( ) ( ){( , ) : } {( , ) : }n n n n n n n n
i dsc i dsc i dsc i i dsc i dsc i dsc ix x x X y x x X∈ = ∈

         (18) 
 
Next, we need to define corresponding sums over Xsub(i) with the frequencies at the subtree 
root parent Xpa(i)  given. For any xpa(i)

n e Xpa(i)
n with frequencies fpa(i) define 

 

                            ( ) ( )

( ) ( ) ( ) ( ) ( )
ˆ( | ) : ( | , ( , ))

n n
sub i sub i

n n n n
i pa i sub i pa i sub i pa i

x X

L n f P x x x xθ
∈

= ∑
             (19) 

 
Again, this is well-defined since any other representative ypa(i)

n of fpa(i) yields summing the 
same terms in different order. 

After having introduced this notation, we now briefly outline the algorithm and – in the 
following subsections – give a more detailed description of the steps involved. As stated 
before, we go through G bottom-up. At each inner node Xi, we receive Lj(n| fi) from each child 
Xj,  j Є ch(i). Correspondingly, we are required to send Li(n| fpa(i)) up to the parent Xpa(i). At 
each component tree root Xi we then calculate the sum Ci(n) for the whole connectivity 
component and then combine these sums to get the normalizing sum C(n) for the complete 
forest G. 

4.1 Leaves 

It turns out, that for a leaf node Xi we can calculate the terms Li(n| fpa(i)) without listing the 
frequencies fi at Xi itself. The parent frequencies fpa(i) split the n data vectors into Kpa(i) subsets 

of sizes ( )( ),1 ( ),, ,
pa ipa i pa i Kf fK  and each of them can be modeled independently as a multinomial. 

We have 
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( )

( ) ( ),
1

( | ) ( , )
pa iK

i pa i MN i pa i k
k

L n f C K f
=

= ∏
                                   (20) 

where 

                      

' '

1

ˆ( , ') ( | ( ), ( ))
'

ili

i i i i

fK
n n il

MN i i i MN i
x X x X l

fC K n P x x M K
n

θ
∈ ∈ =

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

∑ ∑ ∏
          (21) 

 
is the normalizing sum (5) for the multinomial model class MMN(Ki) for a single discrete 
variable with Ki values, see e.g. [9, 15, 8] for details. [8] derives a simple recurrence for these 
terms, namely 
 

                            

'( 2, ') ( 1, ') ( , '),MN MN MN
nC K n C K n C K n
K

+ = + +
                         (22) 

 
which we can use to precalculate all CMN(Ki,n’) (for n'=0,…,n) in linear time each, i.e. in 
quadratic time altogether, for details see [8]. 

4.2 Inner Nodes 

For inner nodes Xi we divide the task into two steps. First collect the messages Lj(n| fi) sent by 
each child Xj e ch(i) into partial sums Ci(n| fi) over Xdsc(i), then “lift” these to sums Li(n| fpa(i)) 
over Xsub(i), which are the messages to the parent. 
The first step is simple. Given an instantiation xi

n at Xi or, equivalently, the corresponding 
frequencies fi, the subtrees rooting in the children ch(i) of Xi become independent of each 
other. Thus we have 
 

        ( ) ( )

( ) ( )
ˆ( | ) ( , | ( , ))

n n
dsc i dsc i

n n n n
i i dsc i i dsc i i

x X

C n f P x x x xθ
∈

= ∑
                                                  (23) 

                         

( ) ( )

( ) ( )| ( ) ( )
( )

ˆ ˆ( | ( , )) ( | , ( , ))
n n
dsc i dsc i

n n n n n n n
i dsc i i dsc i sub j i dsc i i

j ch ix X

P x x x P x x x xθ θ
∈∈

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∏
 (24) 

( ) ( )

( ) ( ) ( )
( )

ˆ ˆ( | ( , )) ( | , ( , ))
n n
sub j sub j

n n n n n n n
i dsc i i sub j i dsc i i

j ch i x X

P x x x P x x x xθ θ
∈ ∈

⎛ ⎞
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

∑∏
                      (25) 

1 ( )

( | )
ili

fK
il

j i
l j ch i

f L n f
n= ∈

⎛ ⎞= ⎜ ⎟
⎝ ⎠

∏ ∏
                                                                                            (26) 

 
where xn

dsc(i)|sub(j) is the restriction of xn
dsc(i) to columns corresponding to nodes in Gsub(j). We 

have used (17) for (23), (11) for (24) and (25) and finally (15) and (19) for (26). 
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Now we calculate the outgoing messages Li(n| fpa(i)) from the incoming messages we have 
just combined into Ci(n| fi). This is the most demanding part of the algorithm, as we need to 
list all possible conditional frequencies, of which there are 

( ) 1( )i pa iK KO n −

 many, the -1 being 
due to the sum-to-n constraint. For fixed i, we arrange the conditional frequencies fikl into a 
matrix F=( fikl) and define its marginals 
 

     
( )1 1( ) : , ,   and  ( ) : , ,

i pa iik ikK i l iK l
k k l l

F f f F f fρ γ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑K K

              (27) 
 

to be the vectors obtained by summing the rows of F and the columns of F, respectively. 
Each such matrix then corresponds to a term Ci(n|ρ(F)) and a term Ci(n|γ(F)). Formally we 
have 
 

                                  ( )

( )
: ( )

( | ) ( | ( )).
pa i

i pa i i
F F f

L n f C n F
γ

ρ
=

= ∑
                                      (28) 

4.3 Component Tree Roots 

For a component tree root ( )iX ch∈ ∅  we do not need to pass any message upward. All we 
need is the complete sum over the component tree 
 

                                               1

!( ) ( | )
! !

i i

i i i
f i iK

nC n C n f
f f

= ∑
K

                                     (29) 
 
where the Ci(n| fi) are calculated using (26). The summation goes over all non-negative integer 
vectors fi  summing to n. The above is trivially true since we sum over all instantiations xi

n of 
Xi

n and group like terms – corresponding to the same frequency vector fi – keeping track of 
their respective count, namely n!/(fi1!...fiKi!). 

5. THE ALGORITHM 

For the complete forest G we simply multiply the sums over its tree components. Since they 
are independent of each other, in analogy to (23)-(26) we have 
 

                                                         ( )

( ) ( ).i
i ch

C n C n
∈ ∅

= ∏
                                                   (30) 

 
Algorithm 1 collects all the above into pseudo-code. 
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The time complexity of this algorithm is 
( ) 1( )i pa iK KO n −

for each inner node, O(n(n+Ki)) for 
each leaf and 

1( )iKO n −
for a component tree root of G. When all m'<m inner nodes are binary 

it runs in O(m’n3), independent of the number of values of the leaf nodes. This is polynomial 
wrt. the sample size n, while applying (5) directly for computing C(n) requires exponential 
time. The order of the polynomial depends on the attribute cardinalities: the algorithm is 
exponential wrt. the number of values a non-leaf variable can take. 

Finally, note that we can speed up the algorithm when G contains multiple copies of some 
subtree. Also we have Ci/Li(n| fi)= Ci/Li(n|π ( fi)) for any permutation π  of the entries of  fi . 
However, this does not lead to considerable gain, at least in order of magnitude. Also, we can 
see that in line 16 of the algorithm we enumerate all frequency matrices F, while in line 17 we 
sum the same terms whenever the marginals of F are the same. Unfortunately, computing the 
number of non-negative integer matrices with given marginals is a #P-hard problem already 
when one of the matrix dimensions is fixed to 2, as proven in [16]. This suggests that for this 
task there may not exist an algorithm that would be polynomial in all input quantities. The 
algorithm presented here is polynomial in both the sample size n and the graph size m. For 
attributes with relatively few values, the polynomial is of tolerable degree.  
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6. CONCLUSION 

The information-theoretic normalized maximum likelihood (NML) criterion offers an 
interesting, non-informative approach to Bayesian network structure learning. It has some 
links to the Bayesian marginal likelihood approach – NML converges asymptotically to the 
marginal likelihood with the Jeffreys prior – but it avoids the technical problems related to 
parameter priors as no explicitly defined prior distributions are required. Unfortunately a 
straightforward implementation of the criterion requires exponential time. In this paper we 
presented a computationally feasible algorithm for computing the NML criterion for tree-
structured Bayesian networks: Bayesian trees and forests (collections of trees). 

The time complexity of the algorithm presented here is polynomial with respect to the 
sample size and the number of domain variables, but the order of the polynomial depends on 
the number of values of the inner 

nodes in the tree to be evaluated, which makes the algorithm impractical for some 
domains. However, we consider this result as an important extension of the earlier results 
which were able to handle only Naive Bayes structures, i.e., Bayesian trees of depth one with 
no inner nodes. In the future we plan to test the validity of the suggested NML approach in 
practical problem domains, and we also wish to extend this approach to more complex 
Bayesian network structures. 
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