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ABSTRACT 

Image processing is an area with many computationally demanding algorithms. When implementing an 
algorithm the programmer has to make the choice of either using a high-level language, thereby gaining 
rapid development at the expense of run-time performance. Or, using a lower level language, having 
higher run-time performance but also a higher implementation cost. In this paper we present PyGPU, an 
embedded language that enables image processing algorithms to be written in the high-level, object-
oriented language Python. PyGPU functions are compiled to execute on the graphics processing unit 
(GPU) present on modern graphics cards, a streaming processor capable of speeds more than a 
magnitude higher than those of current generation CPUs. We demonstrate a number of common image 
processing algorithms, showing how these can be implemented succinctly and clearly using high-level 
abstractions, while at the same time achieving performance close to theoretical peak figures.  
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1. INTRODUCTION 

Using a high-level language for writing software comes with many benefits. The code is 
typically easier to read and understand, making bug spotting easier. The time spent 
programming is reduced since the programmer need not worry about low level details such as 
memory management and data storage formats. In the field of image processing, MATLAB is 
a popular choice of high-level language. It is based on an array programming model in which 
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algorithms are expressed on whole images instead of their individual pixels. For example, 
adding two equal sized images A and B is written simply A+B.  

The downside of high-level languages is poor performance. Even though the individual 
operations have efficient implementations, the overall performance is generally not enough for 
computationally intensive applications such as real-time motion-tracking or high-resolution 
video post-processing. To overcome this lack of performance it is often necessary to 
implement the algorithm in a lower-level language, such as C/C++ or FORTRAN, instead. 
However, this comes at a substantial increase in implementation cost, mainly in terms of 
programmer effort. Using a third-party image processing library such as Intel's Integrated 
Performance Primitives [Intel IPP], the open computer vision library [OpenCV], or Mimas 
[Amavasai], that provide optimized versions of standard algorithms, it is possible to reduce 
this cost somewhat. However, the total implementation cost of using a high-performance, 
lower-level language is typically much greater than when using a higher-level language.  

Recently, there has been increased interest in using the graphics processing unit (GPU) 
present on modern graphics cards as a computational co-processor. The GPU is a highly 
specialized processor that provides very good performance.  On some problems it is capable of 
outperforming current-generation CPUs by more than a factor of ten [Krüger and 
Westermann, 2003]. Programming the GPU is done using specialized languages such as 
NVIDIA's Cg [Mark et al, 2003], Microsoft's HLSL [Gray, 2003], or GLSL by the OpenGL 
ARB [Kessenich, Baldwin, and Rost, 2003].  

Unfortunately, taking advantage of the performance of the GPU requires expressing an 
algorithm in terms of graphics primitives such as polygons and textures.  Doing this requires 
intimate knowledge of modern real-time graphics programming. Consequently, implementing 
image processing algorithms to take advantage of GPU comes at a significant implementation 
cost, even compared to using lower-level languages.  

In this paper we present PyGPU, a language for programming image processing algorithms 
that run on the GPU.  It is implemented as an embedded language [Hudak, 1996] in the high-
level, object-oriented language Python. PyGPU uses a point-wise image abstraction that, 
together with the high-level features of Python, allows image processing algorithms to be 
expressed at a high level of abstraction. By using the GPU for execution, PyGPU is able to 
achieve performance in the order of 2–16 GFLOPS without optimizations even on low-range 
hardware. This is more than enough to perform real-time edge-detection, for instance, on high-
definition video streams.    

The rest of this paper is organized as follows: In Section 2 we introduce PyGPU and show 
a number of example image processing-related algorithms.  In Section 3 we discuss 
performance considerations. In Section 4 we give an description of how the PyGPU compiler 
is implemented. Section 5 contains an overview and discussion of PyGPU and how the 
restrictions and capabilities of the GPU affect how algorithms are implemented. Finally, in 
Section 6 we summarize the contributions made in this paper.    

2. PYGPU 

PyGPU is a domain-specific language for image processing with a compiler that can generate 
code which executes on the GPU. It is implemented as an embedded language in Python. An 
embedded language is constructed by inheriting the functionality and syntax of an existing 
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host language. This enables PyGPU to get a lot of high-level 
language features for free. Python, with its dynamic typing 
and flexible syntax, allows the embedding to be made very 
natural manner. Furthermore, using the extensive reflection 
support of Python, the PyGPU compiler can be implemented 
very concisely as described in Section 4..  

The fundamental abstraction in PyGPU is its image model. 
An image is modeled as a function from points on a 2-
dimensional discrete grid to some space of colors (RGB, 
YUV, gray-scale, CMYK, etc). As will be shown, this 
functional model admits expressing image processing 
algorithms concisely using the high-level language constructs 
of Python. Also it has the advantage of mapping naturally to 
the capabilities and restrictions of the GPU.   

Below is a small PyGPU function implementing a simple 
skin detector. It uses the fact that the color of human skin 
typically lies within a bounded region in the chrominance 
color plane: 

@gpu 
def isSkin(im=DImage, p=Position): 
    y,u,v = toYUV(im(p)) 
    return inRange(u, uBounds) and \ 
           inRange(v, vBounds) 

Looking at the function we see that it has a decorator named @gpu. This is a directive to 
PyGPU's compiler to generate code for the GPU for this function. The default values, DImage 
and Position, are type-annotations that are required to compile the function for the GPU. 

Apart from these details the function looks like ordinary Python code. The function body 
shows that to determine if the pixel p contains skin we first transform the color value of the 
pixel p in the image im to the YUV color space. Then we check if the red and blue 
chrominance values u and v both lie within the specified bounds. Applying the skin detector to 
an image is done by calling it as an ordinary Python function: 

skin = isSkin(hand) 

Note that the position argument is omitted, the skin detector is applied to the whole image. 
The result is shown in to the right.  

The functions toYUV and inRange are examples of functions from the standard library of 
PyGPU. This library also provides standard mathematical operations such as basic arithmetic 
operators, trigonometric functions, and logarithms. These operations work on both scalars and, 
element-wise, on vectors. PyGPU provides vectors of dimension two, three, or four. Vector 
operations such as scalar products, and multiplication by scalars are provided through operator 
overloading, giving an obvious semantics to an expression such as v+a where v is some vector 
and a either a vector or a scalar.  

2.1 Convolutions 

The skin detector is an example of the most basic kind of image operations where each pixel 
in the result image only depends on the pixel at the same position in the sources image(s). 
Many algorithms, however, require access to multiple source image pixels to compute a single 
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pixel in the result image. Convolution operations, such as differentiations and filters, are 
typical examples of such algorithms. One example of a convolution is the Sobel edge detector 
seen below. The edge strength of a pixel is determined as the length of an approximation of 
the image gradient. 

@gpu 
def sobelEdgeStrength(im=DImage, p=Position): 
    Sx = outerproduct([1,2,1], [-1,0,1]) 
    Sy = transpose(Kx) 
    return sqrt(convolve(Sx, im, p)**2 + \ 
                convolve(Sy, im, p)**2) 

The gradient is estimated by the convolution of the so called Sobel kernels, one for the 
horizontal and one for the vertical direction. One can conveniently be expressed as the outer 
product of two vectors and by symmetry the other is the transpose of the first one. 

This example shows a particularly powerful aspect of PyGPU. The functions 
outerproduct and transpose are not PyGPU functions but come from Numpy, an established 
high performance Python array programming library implemented in C [Numerical Python]. 
And yet these functions can be used in code that is compiled for the GPU. The reason this 
works is that the compiler uses generative techniques [Czarnecki and Eisenecker, 2000] to 
partially evaluate the code at compile-time (see Section 4).  

In addition to allowing the use of already available extension libraries, this generative 
feature makes it possible to use high-level language constructs such as lists and list 
comprehensions or built-in standard Python functions even though these features cannot be 
directly translated to the GPU. For example, the convolve function used above can be 
succinctly expressed as: 

def convolve(kernel, im, p): 
    return sum([w*im(p+o) 
                for w,o in zip(ravel(kernel), 
                               offsets(kernel))]) 

The Numpy function ravel is used to compute the column-first linearization of the kernel. 
Using the built-in Python function zip to combine each kernel element with its corresponding 
offset (computed by the offsets helper function), the list of weighted image values can be 
expressed as a list comprehension. The final result is then computed by the standard Python 
function sum. 

2.2 Iterative algorithms 

The operations presented thus far have been algorithms where the result is computed in a 
single pass. Many operation use an iterative strategy where successive applications gradually 
improve the quality of the result. One example of such an algorithm is anisotropic diffusion 
filtering [Perona and Malik, 1990] that allows efficient removal of noise without 
simultaneously blurring edges in an image. One step of Perona-Malik anisotropic diffusion 
can be expressed as: 

@gpu 
def pmAniso(edge=DImage, im=DImage, p=Position): 
    offsets = [(1,0), (-1,0), (0,1), (0,-1)] 
    return im(p) + 0.25*sum([f(edge, im, p+dp, p) 
                                 for dp in offsets]) 
def f(edge, im, x, p): 
    return g(0.5*(edge(x)+edge(p)))*(im(x)-im(p)) 
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def g(x): 
    return e**(-x/(K*K)) 

The function pmAniso is the main function that is compiled for 
the GPU and the functions f and g are helper functions which are 
generatively evaluated during the compilation process. The 
function g controls the conduction coefficients of the diffusion 
process with K determining the slope. The choice of function 
names here is the one used in the original paper. Iteratively 
applying the diffusion operator to an image can either be done by 
the standard PyGPU function iterate or by direct loop: 
edges = edgeStrength(im) 
for i in range(n): 
    im = pmAniso(edges, im) 

This results in successively more smoothed versions of the 
original image. The figure to the right shows an example image 
and the result of applying 400 iterations of the anisotropic 
diffusion operator using K=0.25. 
 
 
 

2.3 Reductions 

One common pattern in the above examples is that the result of the operation is always another 
image. In image analysis, however, it is often the case that the result of an operation is instead 
some overall property of the image, for example the maximum or average image color. These 
kinds of operations are called reductions, operations which reduce the size of an image down 
to a single value or set of values. For example, a function which computes the pixel-wise sum 
of an image can be implemented as:  

def sumIm(im): 
    return reduceIm(add, im) 

Here, the function add is passed as an argument to a 
general reduceIm operation. This function is provided by 
PyGPU and works analogously to Python's built-in reduce 
but on 2-dimensional images instead of on lists. It is 
implemented as an iterative algorithm similar to the 
example in the previous section. Its implementation will 
be shown in Section 2.7. 

A useful example of a reduction is the calculation of 
the center of mass of a region in a binary image. It can be 
used, for instance, to approximate the center of a hand or 
face detected by the skin detector above. The center of 

mass is the average position of all pixels in the region and can be computed as:  
def centerofmass(im): 
    return sumIm(pos(im))/sumIm(im) 
 
@gpu 
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def pos(im=DImage, p=Position): 
    return p*im(p) 

The result of applying the center of mass detection algorithm to the result of the skin detector 
above can be seen to the right.  

2.5 Multi-grid operations 

One of the advantages of programming in high-level languages is that the abstraction 
mechanisms available  makes it possible to package complex operations as basic building 
blocks that can be used to construct even more complex operations. As an example we will 
show the implementation of an operation from the notion of Poisson editing introduced by 
[Pérez, Gangnet, and Blake, 2003].  

The example is called seamless cloning and it is a technique for pasting parts of one image 
into another in such a way that there is no visible seam between the two images. The idea is to 
solve the Laplace equation for both images and only replace the differences from these 
solutions in the pasting operation. 

The Laplace equation states that the sum of the second derivates should be equal to zero. 
In the case of discrete images this is equivalent to saying that a pixel should be equal to the 
average of its four nearest neighbors. This average is computed by the following PyGPU 
function. 

@gpu 
def crossAverage(im=DImage, p=Position): 
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mask 

 
result 

Figure 1. Seamless cloning 
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    offsets = [(1,0), (-1,0), (0,1), (0,-1)] 
    return sum([im(p+o) for o in offsets])/4 

Using the standard higher-order PyGPU function masked, that applies a function within a 
given mask and leaves the values outside unchanged, we can express one part of the Laplace 
equation solver as:  

x = masked(crossAverage, m)(x) 

The statement is of the same form as in the anisotropic diffusion example above. It can be 
used as the basic step in an iterative solver where each iteration yields a successively better 
solution. The complete implementation of seamless cloning can be expressed succinctly as:  

def solveLaplace(x, mask): 
    return iterate(n, masked(crossAverage, mask), x) 
 
def seamlessCloning(source, target, mask): 
    source0 = solveLaplace(source, mask)  
    target0 = solveLaplace(target, mask) 
    return = (source-source0) + target0 

An example of seamless cloning can be seen in Figure 1. 
The Laplace solver above will eventually reach a solution, but it converges very slowly. 

For the example in Figure 1 it requires on the order of 10 000 iterations to compute source0 
and target0, respectively. A standard technique to improve convergence is to use a multi-grid 
approach where solutions are first found at a lower resolution. This approximate solution is 
then used as input to solving the problem at the higher resolution level, giving a better initial 
value for the solution and thereby achieving faster convergence. By changing the definition of 
solveLaplace to  

def solveLaplace(x, mask): 
    return maskedMultigrid(n, crossAverage, mask, x) 

The example instead converges in around 200 iterations. The maskedMultiGrid solver is 
available in the standard library of PyGPU. Its implementation will be shown in Section 2.7. 

2.6 Sparse operations 

The kind of image operations where the parallelism of the GPU is most efficiently used are 
dense operations, where the computations involve all pixels in the image. All operations we 
have shown so far are all examples of this kind. Sparse operations on the other hand operate 
only on a well chosen subset of points in the images, for example feature points such as 
detected corners. The irregular access pattern used by sparse methods make them less suitable 
for implementation on the GPU.  

Some kinds of operations use a combination of dense and sparse methods. One class of 
such operations are active contours or snakes [Kass, Witkin, and Terzopolous, 1988] where a 
polygon is used to define an image area that is interesting in some sense. The contour can 
automatically search for its area by iteratively moving the polygon until a local minimum is 
found on a suitably defined energy function. This function typically consists of a weighted 
average of two separate components: the internal energy and the external energy. The external 
energy is a measure of the image being analyzed, whereas the internal energy is a measure of 
the shape of the contour itself, for example its smoothness. 

The idea is to sample the neighborhood of each vertex of the snake and if any position in 
this neighborhood gives the vertex a lower energy it is moved to this position. This step is then 
repeated as many times as needed. A simple implementation of active contours is:  
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def externalEnergy(im, vs, o, v): 
    return im(vs(v)+o)[0] 
 
def internalEnergy(vs, o, v): 
    p,x,n = [vs((v+i)%nVerts)[0:2] 
             for i in [-1,0,1]] 
    x += offset 
    m = (p+n)/2 
    return norm(x-m)/norm(p-m) 
 
def totalEnergy(wInt, wExt, im, vs, o, v): 
    return wInt*internalEnergy(vs, o, v) + \ 
           wExt*externalEnergy(im, vs, o, v) 
 
@gpu 
def energyOptimize(wInt=Float, wExt=Float, 
                   im=DImage, vs=DImage, v=Int): 
    offsets = array([[0,0], [1,0], [-1,0], [0,1], [0,-1]]) 
    energies = [totalEnergy(wInt,wExt,im,vs,v,o) 
               for o in offsets] 
    return vs(v) + min(zip(energies, offsets))[1] 

Here, the parameters im and vs contain the image we are optimizing over and the vertices of 
the polygon, respectively. The weights wExt and wInt contain the relative weights of the 
external and internal energy. The use of min relies on the fact that comparison between tuples 
in Python is defined lexicographically. This means that we 
will find the energy minimum since this is the first member in 
each tuple. The corresponding offset of that energy minimum 
is given as the second tuple entry. 

The input image used for the external energy is typically 
not the image being analyzed but rather some preprocessed 
version, for example a segmented version with edge 
enhancements. The internal energy shown here is simply a 
measure of how far a position is from the midpoint of the two 
neighboring vertices. This choice will give a ``rubber band''-
like snake contour where a enclosed region is always convex. Many other variants are 
possible. The result of applying the snake algorithm is shown to the right.  

2.7 Implementation of some generic operations 

In the previous sections we have used some generic high-
level operations such as reduceIm and maskedMultigrid. 
Although these are very general and powerful, their 
implementation in PyGPU is still fairly simple. The reduction 
operator is implemented by successively applying the base 
operation to blocks of the image, resulting in smaller and smaller 
intermediary results. When the size of the image is 1×1 it will 
contain the sought quantity as illustrated in the figure at the 
lower right. For a square image having sides that are a power of 
two, the operation can be implemented in PyGPU as: 

block = array([(0,0),(0,1),(1,0),(1,1)] 
 



IADIS International Journal on Computer Science and Information Systems 

 74

def reduceIm(f, im): 
    @gpu 
    def _reduce(im=DImage, p=Position): 
        return f([im(2*p+o) for o in block]) 
 
    while im.size[0] >= 1 and im.size[1] >= 1: 
        im = _reduce(im, _targetSize=im.size/2) 
 
    return im 

This inner function, which is the one executed on the GPU, successively applies the function f 
to 2×2 blocks of the image im until it is reduced to a single 1×1 image. The actual reduction in 
image size is achieved by the parameter _targetSize which is implicitly made available on 
all PyGPU compiled functions with a default value of the size of the input image. 

A multi-grid solver first finds an iterative solution on a coarse resolution of the image 
which is then used as the initial value on successively finer resolutions. This masked multi-
grid solver in PyGPU an be expressed as: 

def maskedMultigrid(n, f, mask, x, minSize): 
    y = None 
    for x, m in reversed(zip(averageR(im, minSize), 
                             averageR(mask, minSize)): 
       if not y: y = x 
       else:     y = masked(inflate(y), m)(x) 
       y = iterate(n, masked(f, m), y) 
       return y 

The averageR helper function generates a sequence of successively coarser representations of 
an image down to size minSize. The function inflate does the opposite, i.e., it computes the 
input to the next higher resolution level.  

3. PERFORMANCE 

PyGPU is built on top of the OpenGL [Shreiner, 2003] and currently uses NVIDIA's Cg 
[Mark, 2003] as code-generation target. The compiler uses a combination of translative and 
generative techniques that, together with the introspection features of Python, allows high-
level Python code to be translated to the GPU. This process is described in detail in Section 4. 
The run-time system of PyGPU is centered around OpenGL framebuffer objects. By using 
framebuffer objects it is possible to avoid unnecessary copying of image data on the GPU, 
resulting in very good performance.  

Although the compiler of PyGPU does not yet implement a number of important 
optimizations it typically achieve between 0.5 and 4 GPixel operations per second (roughly 
equal to 2 to 16 GFLOPS) on the examples shown in this paper. This means that a 9-tap 
convolution filter can be applied to a 500×500 RGBA color image in about 13 ms. The 
examples were run on a NVIDIA GeForce 6600 graphics card, a low-range card at the time of 
writing.  

Table 1 gives a summary of the performance figures for the most representative examples 
in this paper. The execution times are essentially proportional to the number of pixels times 
the number of instructions in the compiled shader program to execute for each pixel. They also 
include a constant overhead for each pass for setting up the graphics cards, passing parameters 
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to the GPU program, and constructing the result texture. This overhead corresponds roughly to 
the computation of a couple of thousand pixels, meaning that it is negligible for larger images.     

The theoretical peak performance of the NVIDIA 6600 card of our test setup is 
approximately 4.8 GPixel operations per second (300 MHz core clock, 8 pixel pipelines using 
instruction co-issuing) with an peak memory bandwidth of 4 GB/s (500 MHz bus clock, 128 
bit bus bandwidth, 64 bits per memory access). As we see from the performance figures, 
programs that perform more computations relative to the number of texture accesses per pixel 
perform very well. For example, the skin detection algorithm is able to reach 80% of the 
computational peak performance.   

However, programs that perform many texture accesses per computed pixel quickly 
become bounded by the available memory bandwidth. This is particularly true for the 
convolution filters that achieve 75% and 85% bandwidth utilization, but with only 11% and 
13% computational efficiency, for the 3×3 and 7×7 case, respectively.    

This figures indicate that the key limiting factor in many GPU programs is memory 
bandwidth. At present, PyGPU is not optimized for minimizing bandwidth consumption. For 
example, all computations are carried out on 32-bit floating point 4-tuples, which means that 
both gray scale and binary images are treated as full four channel RGBA images. By using 
more compact storage formats, as well as reducing the precision to 16-bits where possible, the 
bandwidth requirements will be reduced and performance increased further.      

Table 1. Performance figures for some of the examples 

4. COMPILER IMPLEMENTATION 

The PyGPU compiler is implemented in Python and it is responsible for two major tasks: 
compiling PyGPU functions to programs running on the GPU, and providing the necessary 
glue-code allowing these programs to be called as ordinary Python functions. The 
implementation of the latter is straightforward and will not be covered. The implementation of 
the translation from Python functions to GPU programs is the focus of this section. 

4.1 Related work 

PyGPU lies at the intersection of two problem areas related to compilation: dynamic 
languages and embedded languages. It shares a number of problems from both areas all of 
which must be overcome to allow effective compilation. Furthermore, the restrictions of the 
target platform greatly affect implementation choices. 

4.1.1 Compiling dynamic languages 
Compiling dynamic languages is, in general, a very difficult problem. Most of what we know 
from static languages cease being true: function implementations can be changed at run-time, 

 No. pixel ops No. texture accesses Gpixel ops./s Texture reads (GB/s) 
Convolve (3×3) 27 9 0.56 3.0 
Convolve (7×7) 151 49 0.65 3.4 
Skin detection 57 1 3.9 1.1 
Anisotropic diffusion 43 10 0.58 2.1 
Laplace solver 18 4 0.60 2.8 
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arbitrary code can be executed via eval, and classes can be dynamically constructed or 
changed. One approach is to restrict the dynamism of the language. This is used in PyPy 
[PyPy] and Starkiller [Salib, 2004], two projects targeted at compiling Python. Both projects 
perform static analysis such as type inferencing to translate general Python code into lower-
level compilable code. 

Alternatively, the dynamism can be kept by performing run-time specialization to compile 
functions at call-time. This is the approach taken by Psyco [Rigo , 2004], a just-in-time 
compiler for Python. 

4.1.2 Compiling embedded languages 
By construction, embedded languages can typically be compiled by the host language 
compiler. The problem with compiling embedded language however is that they typically 
target a different platform than that supported by the host language. Some examples of such 
platforms are co-processors [McCool et al, 2002], VHDL designs [Bjesse, 1998], and midi 
sequencers [Hudak et al, 1996]. 

The most direct approach for implementing an embedded language compiler is to view the 
host language merely as syntax for the embedded language. A traditional compiler can then be 
implemented by reusing the front-end for the host language and implementing a new back end. 
Such translative methods work well when the features of the embedded language closely 
match the capabilities of the target platform. In such cases translative methods can be 
implemented fairly directly. 

An alternate approach is to use the overloading capabilities of the host language. By 
implementing a suitable set of abstractions it is possible to execute a program in the embedded 
language in such a way that it generates a program on the target platform. These types of 
generative methods are typically straightforward to implement since much of the existing 
compiler infrastructure is reused. They are however restricted to translating only those features 
of the host language that can be overloaded. Conditionals, loops, and function calls, for 
instance, cannot be overloaded in most languages and consequently cannot translated using 
this approach. Examples of projects using a generative approach are Pan [Elliott et al, 2000], 
Vertigo [Elliott, 2004], and Sh [McCool et al, 2002]. Pan and Vertigo are Haskell domain-
specific embedded languages for writing Photoshop plugins and vertex shaders, respectively. 
Both use a tree-representation constructed at run-time to generate code for their respective 
platforms. Sh is a GPU programming language embedded in C++ that uses overloading to 
record the operations performed by a Sh program. This ``retained'' operation sequence is then 
analyzed and compiled to native GPU code.  We will use a combined approach giving the 
benefits of both these methods. 

4.2 Combining translation and generation 

Given that we use Python as host language for PyGPU we are faced with a difficult decision. 
The restrictions of the GPU make direct translation of features such as lists and generators 
impossible, requiring either restricting the languages or implementing advanced compiler 
transformations. Using a generative method we are required to supply our own conditionals 
and loop-construct thereby sacrificing the syntactic brevity of our host language. Ideally one 
would like to use a translative approach for those features that admit direct translation and a 
generative approach for those that do not. 
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We propose that this can be achieved by combining two features commonly found in 
dynamic high-level languages: introspection and dynamic code execution. Introspection is the 
ability of a program to access and, in some cases, modify its own structure at run-time. 
Dynamic code executing allows a running program to invoke arbitrary code at run-time.  For 
instance, we can use the introspective ability of Python to access the bytecode of a function, 
where elements such as loops and conditionals are directly represented. This allows using a 
translative approach where possible. Using dynamic code execution we can reuse large parts 
of the standard Python interpreter to thereby giving the benefits of translative methods. 

4.3 The compilation process 

As explained above (see Section 2) PyGPU requires that types of all free variables are known 
at compile-time. Parameter which cannot be given a type must be supplied by value. Hence, 
for every parameter of a function we know either its type or its value. The compilation 
strategy thus becomes: if the value is known we evaluate generatively, if only the type is 
known we perform translation. 

The compiler is implemented in the usual three stages: front end, intermediate code 
generation, and back end. The intermediate code generation and back end stages are 
implemented using well-known compiler techniques. We use static single-assignment (SSA) 
[Cytron et al, 1991] for representing the intermediate code. This enables many standard 
compiler optimizations, such as dead-code elimination and copy propagation, to be 
implemented effectively. The optimized SSA code is then passed to a back end native code 
generator. At the moment we use Cg [Mark et al, 2003] as a primary code generation target 
allowing optimizations of that compiler to be reused. 

The front end however, differs from the standard method of implementing a compiler. 
Instead of using text source code it operates directly on a bytecode representation and it is the 
front end that implements the above compilation strategy. How this is implemented using the 
dynamic code execution features of Python will now be described in detail. 
The front end parses the stack-based bytecode of Python and translates it to a flow-graph 
which is passed to the intermediate code generator. Throughout this process the types of all 
variables are tracked allowing the compiler to check for illegal uses as well as performing 
dispatch of overloaded operations. 

Simple opcodes, such as binary operations, are translated directly. More complicated 
examples such as function calls, that would not be translatable using a generative approach, 
are handled using the above strategy: 

elif opcode == CALL_FUNCTION: 
    args = stack.popN(oparg) 
    func = stack.pop() 
    if isValue(args): 
       stack.push(func(*args)) 
    else: 
       compiledF = compileFunc(func, args) 
       result = currentBlock.CALL(compiledF, args) 
       stack.push(result) 

That is, if all the arguments are values then the function is evaluated directly in the standard 
interpreter. This is done by using the dynamic code execution abilities of the standard 
interpreter to call the function via func(*args). This allows the PyGPU compiler to reuse 
functionality present in external libraries (even compiled ones) generatively. Note that, in 
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general this kind of constant-folding of function calls is not permitted. The function being 
called may depend on global values whose value may change between invocations. But, since 
the GPU lacks globals variables PyGPU does not allow global values to be changed after a 
function has been compiled and consequently this transformation is valid. 

If the value of at least one argument is not known then the callee is compiled and a 
corresponding CALL-opcode is added to the current block of the flow-graph.  This strategy is 
not restricted to the case of function calls, it can be used to handle loops as well. Consider the 
fragment 

for i in range(n): 
    acc += g(i) 

If n is known at compile-time then we may evaluate range(n). Consequently the sequence 
being iterated over is known and the loop can be trivially unrolled. If n is not known the 
fragment is translated to an equivalent loop in the GPU. The code for handling loops is similar 
to that of handling function calls albeit slightly more complicated. 

4.4 An illustrative example 

The compilation strategy presented above is very straightforward and it is not obvious how 
this strategy enables us to translate more complicated examples. Consider the implementation 
of the convolve function used in Section 2.1: 

def convolve(kernel, im=Image, p=Position): 
    return sum([w*im(p+d) 
                for w,d in zip(ravel(kernel), 
                               offsets(kernel))]) 

The implementation reads: to compute the convolution we first compute the column-first 
linearization of the kernel using the function ravel. The offset to each kernel element is 
computed and each offset is associated with its corresponding kernel element. The image is 
accessed at the corresponding locations and the intensities are weighted by the kernel element. 
Finally the resulting list of intensities is summed and the result returned. 

Note that here we use a number of features which cannot be directly translated to the GPU: 
the compiled Numpy [Numerical Python] function ravel, list-comprehensions, and the built-
in Python functions zip and sum both which operates on lists. However, using the above 
strategy compilation proceeds as follows: The value of kernel must be known at compile-time 
and, consequently, the values of ravel(kernel) and offsets(kernel) can be computed. 
Hence the arguments to zip are known which implies that it may, in turn, be evaluated at 
compile-time. The resulting list is used to unroll the list-comprehension resulting in a known 
number of image accesses which can be directly translated to the GPU. The code for summing 
these accesses and returning is generated similarly thereby concluding the translation of the 
above function. 

5. DISCUSSION 

As we have seen the PyGPU language combines high-level programmability with high 
performance. Being embedded in Python allows functions running on the GPU to be called 
transparently from Python, greatly facilitating integration of GPU algorithms in larger 
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applications. Furthermore, since PyGPU functions are, at the same time, valid Python 
functions GPU programs can be tested on the CPU before being run on the GPU. This allows 
standard debugging and testing tools to be used for GPU programs also, reducing the need for 
more specialized GPU debugging tools [Duca et al, 2005].   

The performance of the GPU comes from it having a pipelined, highly parallel 
architecture. This introduces a number of restrictions on what kinds of operations are possible 
to implement on the GPU. It lacks writable memory. Memory is read only and may only be 
accessed only in the form of textures containing up to 4-tuples of floating point values. This 
means that Python features such as lists and objects cannot be used directly on the GPU. But, 
as we have seen, they may still be used to construct programs. 

Also, GPU programs can only write output to a predetermined image location. This means 
that GPU algorithms must be, using the terminology of parallel computation, written using a 
gather, rather than scatter, approach. This restriction is encoded in PyGPU's image model, 
where algorithms are expressed in a point-wise manner using only gather operations. This is 
also the reason why the general reduce operator, used to do summation for example, is 
implemented as a iteration over a sequence of progressively smaller images, rather than using 
a straightforward accumulation loop.   

This lack of scatter support sometimes creates difficulties. One such problematic example 
is computing histograms. This operation is traditionally implemented as a loop over all pixels, 
having time-complexity linear in the number of pixels. Since the GPU does not support for 
scattered writes it must instead be implemented as a reduction 

histogram = reduce(countBins, toBins(im))(0,0) 

where toBins sorts pixels to their respective bins and countBins count the number of 
occurrences in each bin. GPUs only support outputting a limited number of values per pixel, 
currently 16 floating point values. With a larger number of bins than this the algorithm must 
be run multiple times resulting in a time-complexity on the order of the number of pixels times 
the number of bins. This illustrates that not all kinds of image processing algorithms are 
suitable for the GPU.  

5.1 Related work 

PyGPU was inspired by Pan written by Elliott, Finne, and de Moor [Elliott, Finne, and de 
Moor, 2000], which is an domain-specific language for image synthesis, embedded in the 
functional language Haskell [Jones, 2003]. In particular, the functional image model of 
PyGPU is very similar to that of Pan, but where Pan uses a smooth model, PyGPU focuses on 
a discrete formulation that allows easier pixel-wise addressing for operations such as 
convolutions etc.  

Other domain-specific languages for using the GPU as a computational co-processor have 
been proposed.  For example, BrookGPU [Buck et al., 2004] is a compiler for writing 
numerical GPU algorithms in the Brook streaming language, an extension of ANSI C that 
incorporates streams and kernels, representing data and operations on data, respectively. The 
stream and kernel primitives can be mapped to efficient programs running on the GPU. Also, 
Sh [McCool et al, 2004], for instance, uses C++  templates to provide stream processing 
abstractions similar to those of Brook. These two projects are based on C and C++, 
respectively. By using Python, PyGPU is able provide higher-level facilities for writing GPU 
image processing algorithms than currently possible with these approaches.  
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Other projects are also targeted at using the GPU as a co-processor for image processing 
and computer vision. Perhaps the most important among these is [OpenVIDIA], a GPU-
accelerated computer vision library.  OpenVIDIA provides GPU-implementations of a number 
important computer vision algorithms, including Canny edge detection, skin tone tracking, and 
image compositing. Compared to PyGPU, OpenVIDIA provide only a fixed number of 
algorithms whereas PyGPU provides a complete, high-level language for implementing many 
different image processing/computer vision algorithms.  

5.2 Future work 

The current syntax of PyGPU requires the programmer to clearly make the distinction between 
the parts of the code that should execute on the GPU and the parts that should executon the 
CPU. A nice feature would be to have the compiler be able to do this allocation by itself. 
Apart from relieving the responsibilities of the programmer, it would also allow the compiler 
to perform more optimizations, both on for storage requirements and also load-balancing. 

Also, in order to translate a Python function to the GPU, PyGPU's compiler must know the 
types of the function parameters. Currently, this information must be provided by the 
programmer. An interesting improvement would be to remove this requirement and instead 
have the compiler automatically infer the necessary type information. While PyGPU was 
initially intended as a language for image processing, it would be usable in other areas as well. 
Extending the scope of PyGPU to more mathematically oriented applications is a interesting 
future improvement. For example, both the snake and seamless cloning algorithms presented 
above, have more general mathematical applications.  

6. SUMMARY 

We have presented PyGPU, a language for image processing on the GPU embedded in 
Python. The functional programming model used by PyGPU allows algorithms to be 
translated to efficient code running on the GPU, while still retaining the high-level language 
features allowing them to be implemented concisely and clearly. The performance of PyGPU 
is good, allowing many algorithms to be run on real-time streaming video sequences without 
need for special optimization. This enables the implementer to receive rapid feed-back during 
algorithm development and debugging. 

Also, by using language embedding the high-level benefits of Python are transferred onto 
PyGPU, allowing features such as list comprehensions and higher-order functions to be used 
in the construction of image processing algorithms. By writing at a higher level of abstraction 
the code is easier to read and understand. Furthermore, constructing more complex algorithms 
from simpler building blocks facilitates error detection, making algorithm development and 
implementation faster and easier.  
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