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ABSTRACT 

Functional Dependency (FD) is an important feature for referencing to the relationship between 
attributes and candidate keys in tuples. It also shows the relationship between entities in a data model 
(Calvanese et al. 2001). In research areas of data cleaning (Arenas et al. 1999; Bohannon et al. 2005), the 
FD is used for improving the data quality. In a data mining research, an FD discovery technique has been 
studied (Savnik and Flach 1993; Huhtala et al. 1999). However, an FD discovery could find too many 
FDs and, if use directly in a cleaning process, could cause it to NP time (Bohannon et al. 2005). In this 
research, we have developed a cleaning engine by combining an FD discovery technique with data 
cleaning technique and use the feature in query optimization called “Selectivity Value” to decrease the 
number of discovered FDs.  
Testing results showed that this work can identify duplicates and anomalies with high recall and low 
false positive.  

KEYWORDS 

Functional Dependency, Data Cleaning, Functional Dependency Discovery 

1. INTRODUCTION 

Clean data is crucial for a wide variety of applications in many industries (Erhard and Do 
2000). When data has kept increasing in an explosive rate, a task to keep data correct and 
consistent can be overwhelming. Worse than that main causes of dirty data come from many 
basic mistakes such as mistaken data entry, missing fields, typos, etc. Although, data in 
general has some dependency semantics and they usually help to avoid such mistakes, several 
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times, they are ignored or unaware during database designs or may be dropped for 
performance improvement.  

Researches (Arenas et al. 1999; Bohannon et al. 2005) presented that a functional 
dependency (FD) is a property in data that has the ability for cleaning dirty data. In general, 
FDs depend directly on the semantic of a system. However, FDs can be retrieved from data by 
using a data mining technique (Savnik and Flach 1993; Huhtala et al. 1999; Ilyas et al. 2004). 
To make automatic cleaning using FDs, we developed a cleaning engine by combining the FD 
discovery technique to a data cleaning technique.  

However, the combining solution is sensitive to data size. When the data increases, it 
decreases the speed of the discovery algorithm. Moreover, when a number of attributes 
increases, the discovery creates more candidates of FDs and generates too many FDs including 
noise ones. The large amount of FDs can degrade the performance of the data cleaning. To 
decrease the number of generated FDs, we use a query optimization technique, “Selectivity 
Value” to prune an unlikely FD. 

1.1 Basic Background 

We revised some basic terms in a relational concept.  
Functional Dependency: Formally, let r be a relation of relation schema R, with X and Y 

are subsets of R. Relation r satisfies the functional dependency (FD) X  Y, if for any two 
tuples t1 and t2 in r, whenever t1[X] = t2[X] then t1[Y] = t2[Y] (Garcia-Molina et al. 2001). The 
set of attributes X is called the left-hand side of the FD and Y is called the right-hand side. 

Partition: For dataset r, the data over the relational schema R, a partition for attribute A, 
denoted as ΠA(r), is groups of disjoint sets of tuples that are a projection of attribute A. In 
table 1, for example, ΠA(r) = {{t1, t2, t3, t4, t7}, {t5, t6}} and a partition for the attribute AD is 
ΠAD(r) = {{t1, t2, t3, t4, t7}, {t5, t6}}. The cardinality of the partition |ΠA(r)| is the number of 
classes in the partition ΠA. For this example, |ΠA(r)| is 2, and |ΠAD(r)| is 2 also. Because |ΠA(r)| 
is equal to |ΠAD(r)|, A D can be obtained (Huhtala et al. 1999). 

Table 1. A sample dataset 

 A B C D E 
t1 a0 b0 c0 d1 e0 
t2 a0 b1 c0 d1 e0 
t3 a0 b2 c0 d1 e1 
t4 a0 b3 c1 d1 e0 
t5 a2 b1 c1 d2 e2 
t6 a2 b3 c1 d2 e3 
t7 a0 b0 c1 d1 e0 

 
Approximate FD: X → Y or e(X → Y) is a set of tuples containing proportionally less 

members which if taken this set out will accept FD X → Y 
e(X → Y) can be calculated as following: set Equivalence Class c of ∏X  as a union of 

Equivalence Class c’1, c’2, etc. of  ∏X U {Y}. To accept (FD) X → Y, we have to remove all 
sets of tuple except c’is. The less set of tuple that have to be cut off to accept (FD) X → Y is 
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equal to size of |c| - size of the set of the largest tuple c’is. Thus, the equation is 
{ { } }∑ ∏

Π∈
∪

⊆∈−=→
xc
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Approximate Threshold ε,  if e(X → Y) ≤ ε then (FD) X → Y, ε equal to the largest set 
that has to be removed to accepted (FD) X → Y. 

1.2 Related Researches 

(Maletic and Marcus 1999) introduced an automated data cleaning framework. Their work 
separated into 2 parts: identifying error and cleaning data. The underlying theoretical aspects 
of the data quality of their research is a combination of existing problem-solving methods in 
software testing, data mining, knowledge based systems, and machine learning to address the 
framework. According to their research, to design automated data cleaning, one has to identify 
errors and then clean such dirty data. Thus, our design use the FD discovery algorithm for 
identifying errors and cleaning algorithm together to produce FD cleaning tool.  

Several researchers in this field have mentioned that too many FDs has been generated 
(Andritsos et al. 2004; Ilyas et al. 2004). (Huhtala et al. 1999) showed a pruning technique for 
generating a candidate set and computing each candidate member to determine FDs. The 
ranking technique has been proposed in (Ilyas et al. 2004) and (Andritsos et al. 2004). (Ilyas et 
al. 2004) applied a selectivity value for ranking FDs from generated FDs (called “SoftFD”). 
Their work proposed that if p1 and p2 are predicates on respective columns C1 and C2, then 
the selectivity of the conjunctive predicate p1 ∧ p2 is estimated by simply multiplying together 
the individual selectivity of |C1||C2|/|C1,C2|. (Andritsos et al. 2004) proposed that the FD 
ranking should be concerned on the first merge of the attribute that has the most amount of 
duplicate attribute value. These 2 ranking techniques give us the idea of ranking by looking at 
the data distribution. However, the merging technique will consume more times than the 
selectivity value because it generates the clustered matrix but the selectivity value can be 
found by counting attribute value directly. Therefore, our work will choose the selectivity 
value technique to ranking the generated FDs. 

There are 2 parts for cleaning algorithms: FD repairing technique and Duplicate 
Elimination. FD repairing has been proposed by (Bohannon et al. 2005). Their research used a 
cost based technique which used a low cost data to repair a high cost data. (Hernandez and 
Stolfo 1995) proposed Sorted Neighborhood methods for Data Duplicate elimination by 
finding keys to determine duplicate tuples, then sorting the duplicate tuples and finally, 
matching tuples in the window to identify its duplication. 

1.3 Contributions 

To combine the FD discovery technique to the cleaning tool, we found and solved the 
following problems:  

- The result of FD discovery can produce too many FDs. To reduce its number, we 
merge the ranking technique using selectivity value to prevent a wrong chosen FD 
that can cause data inconsistency and errors in the FD discovery.  During the 
discovery step, we also identify suspicious tuples for cleaning.  

- The duplicate elimination algorithm will sort all attributes to group the similar tuples, 
this algorithm increases work load. Therefore, this research will repair suspicious 
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error data first and then do the duplicate elimination. It helps to reduce the number of 
sorting attributes and, as a result, decrease a work load. 

2. SYSTEM ARCHITETURE 

The system architecture consists of Data Collector, FD Engine, Cleaning Engine, and Data in 
Relational Database (as shown in Figure 1). The methods for data cleaning start at the Data 
Collector retrieving the dirty data from relational database and the FD Engine will identify 
duplicate data and inconsistency error, after that the Cleaning Engine will bring the FD 
generated from the FD engine to repair dirty data. Next, the cleaning engine will store data in 
the relational database and make it ready to import to a data warehouse. 
 

 
Figure 1. FD cleaning tool architecture 

2.1 Data collector 

The Data collector improves some quality of data and prepares it for the next module. The 
module corrects data from basic typos, invalid domains and invalid formats. These problems 
can cause algorithm in the FD engine to run incorrectly because the FD engine use exactly 
matching. The output data from this module will be in a relational format.  

2.2 FD engine 

The FD engine is an FD finding module. Since the dirty data usually has some errors, so we 
use the Approximate FD technique (Huhtala et al. 1999) to remove errors and find FD. But to 
select only useful FDs, we apply the selectivity value technique to rank the candidates in its 
Pruning step and select the candidates only with the high and low rank from the computing FD 
step. At the same time, any errors detected from this modified FD engine are suspicious tuples 
for cleaning. The errors can be separated into 2 types: errors from finding a candidate key FDs 
and errors from finding non-candidate key FDs. The non-candidate key FDs’ errors are 
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inconsistent data. The candidate key FDs are potentially duplicated data. Together with the 
discovered FDs, all suspicious error tuples will be sent to the next step, the cleaning engine.  

2.3 Cleaning engine 

The cleaning engine will receive the suspicious error tuples with FD selected from the FD 
engine and then will assign weight to the data. A high error produces a high weight. Tuples 
with low weights will repair the high weight tuples. After updating the weight, the engine 
brings the FD to clean the data by using the Cost-based algorithm (Bohannon et al. 2005). The 
last step is to find the duplicate data by improving the sorted neighbor-hood method algorithm 
(Hernandez and Stolfo 1995) through using the candidate key FD from the FD engine to 
assign key and sorting data from the attribute on the left-hand side of FDs. 

 
Figure 2. Procedure FIND_FD 

3. PROCEDURE TO SYNTHESIZE FD 

The FD synthesizes starts on the procedure FIND_FD as shown in Figure 2 which have to 
specify three threshold values: Low Ranking Threshold, High Ranking Threshold, and 
Approximate Threshold.  The procedure returns the set of FDs that can be used for cleaning 
the data. In the first step, this procedure assigns empty candidates to level 0 and set all 
attributes of input data to new candidates in level 1. Then, set set_of_fds variable to empty and 
set start level as 1. Next it finds FDs from candidates in the current level, synthesize FD and 
Key FD from candidates in the current level, and store the result FDs in set_of_fds variable. 
Then, PruneNextLevel procedure using candidates in the current level has been called to store 
the results at next level (level +1). The procedure ends after there is no more candidate 
member. 
 
 

PROCEDURE FIND_FD(LowRankingThreshold, HighRankingThreshold, ApproximateThreshold) 
OUTPUT set_of_fds 
BEGIN 

Initialize Level 0, Level 1 
set_of_fds = empty 
level = 1 
WHILE (GetNoOfCandidates(level)>0) 
BEGIN 

set_of_fds = set_of_fds U  ComputeFD(ApproximateThreshold,level) 
set_of_fds = set_of_fds U ComputeFDPrimaryKey(ApproximateThreshold,level) 
PruneNextLevel(LowRankingThreshold, HighRankingThreshold, level+1) 
level = level +1 

   END 
END 
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4. SELECTING THE FD 

We apply selectivity value for ranking the candidate in order to find the appropriate FD. 

4.1 Selectivity value 

As mention in (Ilyas et al. 2004), the selectivity value, |C1||C2|/|C1, C2|, determined its 
distribution. If the selectivity value of any attribute is high, the attribute value is highly 
distributed. But if the attribute value is low then the attribute value is more likely to be united. 
Thus, the highly distributed attribute is potentially a candidate key and can be used to 
eliminate duplicates. While the lowest distributed attribute can be applied to improve the error 
of distortion of attribute values in the cleaning engine.  

The above selectivity value, according to (Huhtala et al. 1999), can be calculated from 
|ΠX||ΠY|/|ΠX, Y| where the |ΠX| represents a number of classes in a partition X, the |ΠY| 
represents a number of classes in a partition Y and |ΠX, Y| represents a number of classes in a 
partition X ∩ Y. For example, as in table 1, selectivity value of A ∧ B is 2 x 4 / 6 = 1.33.   

4.2  Ranking the candidate 

After calculating the selectivity value for determining the ranks of candidates, we sort these 
ranks in ascending order as shown in Figure 3. 

 

 
Figure 3. Ranking FD example 

To choose potentially good candidates, we first define the low ranking threshold and high 
ranking threshold as a pruning point. The selected candidates are chosen from the candidates 
with either high ranking or low ranking values. The high ranking candidate has high 
selectivity (i.e., its cardinality is closed to the table’s cardinality). Thus, it is potentially a 
candidate key. The low ranking candidates is potentially an invariant valued which can be 
functionally determined by some attribute in a trivial manner. Thus, it can be computed to be a 
non-candidate key on the right-hand side. The middle ranking is not precise so we drop it.  

4.3 Improve the pruning step 

The example of candidate generation is shown in Figure 4. At level 0, the starting level, the 
amount of candidate has been set to 0. At level 1, the member of candidate is set to {A, B, C, 
D, E, F, G} then we calculate the ranking and cut off some members in the middle rank. The 
remaining candidate is {A, C, D, E}. At level 2, we generate the candidate set {DA, DC, E} 
while candidate E in the high ranking will not be combined with the low ranking. At level 3 

Low Ranking High Ranking 

Candidate Key FD Non Candidate Key FD Not Precise 

FD Ranking 

Low ranking threshold High ranking threshold 
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the last level, {DAC, E} has been generated after the algorithm described above cut off some 
members. 
 

 
Figure 4. Pruning lattice example 

Algorithm in Figure 5 shows the improved pruning technique applying with the low 
ranking and high ranking threshold. Thus, the PruneNextLevel procedure has 
LowRankingThreshold, HighRankingThreshold and a pruning level as its arguments. The 
algorithm works as follow: first, it begins the pruning by getting the set of candidates in level - 
1 and then, checks the candidates. If they are not the FD and in either high or low accepted 
ranking, then we use StoreCandidate function to store new candidate from candidate_x and 
candidate_y in the current level. Other candidates that are in a neither low nor high ranking 
will be ignored.  

 
Figure 5. Improved pruning method 

5. TESTING 

To demonstrate performance of the tool in cleaning data, we test the cleaning tool with 2 
different groups of data. The first group is the actual customer data containing 50,000 records. 

PROCEDURE PruneNextLevel(LowRankingThreshold, HighRankingThreshold, level) 
BEGIN 
 set_of_candidates = GetCandidateSet(level - 1) 
 superkey_threshold = (1 – HighRankingThreshold) x no_of_tuples 
 FOR i = 0 TO |set_of_candidates| - 1 
  FOR j = 1 TO |set_of_candidates| - 1 
  BEGIN  
   candidate_x = GetCandidate(i, set_of_candidates) 
   candidate_y = GetCandidate(j, set_of_candidates) 
   IF (NOT IsFDAccept(candidate_x)) AND 
   ((GetRanking(candidate_x, candidate_y) <= LowRankingThreshold) OR 
   (GetRanking(candidate_x, candidate_y) >= HighRankingThreshold)  OR 

(GetNoOfClasses(candidate_x, candidate_y) >= superkey_threshold)) 
   BEGIN 
    StoreCandidate(candidate_x, candidate_y, level) 
   END 
  END 
END 

level 0

level 3

level 2

level 1
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The testing with customer data shows the ability of tool to clean data by automatic finding 
proper FD comparing to specify FD manually. The second group is Part-Supplier data from 
(TPC.ORG 2006) containing 239,000 records, generated from a program. This data is used in 
order to test any affects of its parameters to the capability and limitation of the cleaning tool.   

5.1 Measurement  

In our experimental, we already known the error and duplicate of data, so we can compare the 
input and output of our algorithm by using the following measurement; 

1. Error Corrected  = (Number of error tuples that has been repaired correctly in the 
output / Number of error tuples in the input) * 100%  

2. False Positive = (Number of error tuples that has been repaired and the result is still 
error in the output / Number of correct tuples in the input) * 100% 

3. Recall = (Number of error tuples that has been repaired in the output / Number of 
error tuples in the input) * 100% 

5.2 The Dataset Generator 

This dataset generator provides duplicate tuples and inconsistency to be introduced in the 
tuples in any of the attributes. The inconsistency introduced in tuples is performed by given 
FDs. We distort one tuple per FD randomly. The dataset generator accepts %duplicates and 
%inconsistency as its arguments. For example, to generate dataset with 10% duplicates, the 
program randomly chooses 47,500 tuples from 50,000 real customer tuples, insert to a new 
dataset. Next, it randomly chooses 2,500 tuples from 47,500, create duplicates and append to 
the new dataset. For the dataset with 10% inconsistency, it inserts all tuples of 50,000 real 
customer tuples into a new dataset. To make inconsistency, it chooses 5,000 tuples in the new 
dataset and randomly selects 5,000 tuples and randomly picks an FD from the given FDs to 
distort the data. Last example, for dataset with 10% duplicates and inconsistency, it creates a 
new dataset with 10% duplicates and then makes 10% inconsistency in the same way as 
previously mentioned. 

5.3 Real Dataset Testing 

50,000 real customer tuples are used as a data source. Each customer tuple consists of the 
following attributes: CustID, Title, Thai_Name, Thai_Surname, Eng_Name, Eng_Surname, 
Occupation, Address, Alley, Road, Sub_District, District, Province, Postcode and Phone. To 
allow us to perform controlled studies and to evaluate the accuracy of our method, all test 
dataset for our cleaning algorithm was distorted automatically by making inconsistency and 
duplication via a dataset generator.  
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Table 2. Ten Given FDs for the customer data 

Thai_Name, Eng_Surname  Occupation 
Postcode  Province 
Road, District  Province 
Sub_District, District  Province 
Thai_Name, Thai_Surname  Eng_Name, Eng_Surname 
CustID, Thai_Name  Thai_Surname 
CustID  Eng_Name, Eng_Surname 
Thai_Name, Thai_Surname  Address, Alley, Road, Sub_District, District, Province, Postcode 
Thai_Name, Thai_Surname  Phone 
District, Phone  Province 

Results 
In our experiment, we separate the dataset into 3 sets, as follows: first dataset has 10% 
duplicates, second dataset has 10% inconsistency and last dataset has 10% duplicates and 
inconsistency. We assign the ApproximateThreshold 0.05 for all cases except 10% 
inconsistency which uses 0.03 for this threshold, Low Ranking Threshold 0.1, and High 
Ranking Threshold 0.005 to FD discovery algorithm.  

Each dataset has been tested  and compared between the cleaning result from the FD 
discovery in our algorithm (aka., Discovery FD) to the cleaning result from manually given 
FDs (aka., Manual FD). The cleaning result of the Discovery FD method is expected to be as 
good as the Manual FD.  

Result of 10% duplicates 
As shown in Figure 6, the Discovery FD has improved 100% of Error Corrected but the 
Manual FD has improved 100%. Figure 7 showed that the Discovery FD and Manual FD have 
0% False Positive. Figure 8 showed that the Discovery FD has 100% of recall similar to the 
Manual FD. 

The result of this dataset, Manual FD has the ability to detect 100% of duplication. The 
result in Discovery FD has ability to detect 100% of duplication. The results showed that the 
Discovery FD has the ability to detect the duplication of tuples in the dataset similar to the 
Manual FD.  

Result of 10% inconsistency 
As shown in Figure 6, the Discovery FD has improved 10% of Error Corrected but the manual 
one has improved 34%. Figure 7 showed that the Discovery FD has 3.38% False Positive 
while the Manual FD has 0.78% False Positive. Figure 8 showed that the Discovery FD has 
32% of recall and the Manual FD has 30% of recall. 

The cleaning result for this dataset in both cases can improve not much. The reason is that 
the algorithm is not able to find the conflict tuples to help in the cleaning process. Although, 
the Manual FD gives a better result than the Discovery FD, the Discovery FD is able to detect 
inconsistency better than the Manual FD. 

Result of 10% duplicates and inconsistency 
As shown in Figure 6, the Discovery FD can improve 70% of Error Corrected and Manual FD 
can improve 66% of Error Corrected. Figure 7 showed that the Discovery FD has 0.0049% of 
False Positive but the Manual FD can improve 0.83% of False Positive.  So, the Discovery FD 
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has given a lower False Positive than the manual one. Figure 8 showed that the Discovery FD 
has 70% of recall but the Manual FD has 66% of recall. In this case, the Discovery FD also 
gives a better recall than the Manual FD. 

For this dataset, both methods are able to correct some inconsistency but in the Discovery 
FD gave a higher percentage of error corrected than the Manual FD. Overall, the Discovery 
FD seems to have the ability to find FD almost equal to Manual FD but it can detect 
suspicious tuples better than the Manual FD. 
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Figure 8. %Recall 

Synthesize Dataset Testing 

Data for testing is the information of products and their vendors which generated from dbgen 
of TCP-H (TPC.ORG 2006) In data generation, we use the Scale of data at 300K which will 
output total 239,200 records and 19 attributes. The characteristic of this generated data is using 
2 attributes as a key attribute.  
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Table 3. FDs found in PART-SUPPLIER data 

P_BRAND  P_MFGR 
P_NAME  P_TYPE 
P_NAME  P_SIZE 
P_NAME  P_MFGR 
P_PARTKEY  P_CONTAINER 
P_PARTKEY  P_NAME 
S_PHONE  S_ADDRESS 
S_NAME  S_PHONE 
S_NAME  S_ACCTBAL 
S_SUPPKEY  S_NATIONKEY 

The testing of varies threshold value 
To find the effect of threshold change on the data cleaning, we divided the test into 3 parts: 
testing High Ranking Threshold, testing Low Ranking Threshold, and testing Approximate 
Threshold.  We use 2 groups of data: 10% Dup, Inc and 10% Inc, to compare the effect 
causing by different anomaly data. 

High Ranking Threshold: Set Approximate Threshold to 0.05 and Low Ranking 
Threshold to 0.3 According to the graph from Figure 9 and 10, it shows, from 0.01 to 0.04, 
%Error Corrected is ~59% and %False Positive is 0%. After increasing the High Ranking 
Threshold to more than 0.4, the %Error Corrected is decreased and the %False Positive is 
increased.    
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Figure 9: %Error Corrected in High Ranking Threshold     Figure 10: %False Positive in High Ranking 
Threshold                       change on 10% Dup, Inc data                                            change on 10% Dup, 

Inc data   

According to the graph from Figure 11 and 12, %Error Corrected starts at ~20% and 
decreases gradually. At High Ranking Threshold equal to 0.0001, %False Positive is 0%. 
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After increasing High Ranking Threshold, %False Positive trend is increasing. The best High 
Ranking Threshold of 10% Dup, Inc is 0.01. The High Ranking Threshold is so different 
because 10% Inc data contains no duplicate and dispersing data due to some attributes are free 
content causing High Ranking Threshold to high and giving wrong candidate keys.   In the 
next experiment, 10% Inc data will be assigned High Ranking Threshold to 0.0001 and  10% 
Dup, Inc will be assigned High Ranking Threshold to 0.01, resulting from this test.             
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Figure 11: %Error Corrected in High                             Figure 12: %False Positive in High  
Ranking Threshold change on 10% Inc data                Ranking Threshold change on 10% Inc data   

Low Ranking Threshold: Set Approximate Threshold to 0.05 and High Ranking 
Threshold to 0.01 for 10% Dup, Inc and 0.0001 for 10% Inc. According to the graph from 
Figure 13 and 14, in Low Ranking Threshold between 0.3 and 0.4 for 10% Dup, Inc and 10% 
Inc data, %Error Corrected is ~59% and 20% respectively whereas %False Positive is ~0%. 
After increasing Low Ranking Threshold to more than 0.4, %Error Corrected of 10% Inc data 
dramatically decreased and %Error Corrected of 10% Dup, Inc increased slightly while 
%False Positive of both data increased. As considered, the less Low Ranking Threshold is 
found at 0.3. 
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Figure 13: %Error Corrected                                                           Figure 14: %False Positive 

       in Low Ranking Threshold                                                      in Low Ranking Threshold change 

Approximate Threshold: Set Low Ranking Threshold to 0.3 and High Ranking Threshold 
to 0.01 for 10% Dup, Inc and 0.0001 for 10% Inc. According to the graph from Figure 15 and 
16, for the data of 10% Dup, Inc, %Error Corrected is low about 10% at threshold equal to 
0.03 while at threshold equal to 0.05, %Error Corrected is ~59% and steady after that.  The 
%False Positive is ~0% on all thresholds. For the data of 10% Inc, %Error Corrected is ~20% 
and %False Positive ~0% on all thresholds. In the Figure 15 on 10% Dup, Inc, %Error 
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Corrected increased at Approximate Threshold equal to 0.05 because 0.05 (5%) is the 
minimum (1/2 of %Dup) that Discovery FD can synthesize Candidate Key FD. 

In summary, the experiment of Low Ranking Threshold and High Ranking Threshold 
change found that increasing both threshold values up to some certain point will not improve 
and worsen the cleaning process. 
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Figure 15: %Error Corrected                                                          Figure 16: %False Positive  
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The cleaning test on three data sets 
The cleaning test divided the data into 3 sets: the first is 10% Dup, the second is 10% Inc and 
the third is 10% Dup, Inc. As from the testing of varies threshold value, all sets will be 
assigned threshold value as Approximate Threshold = 0.05, Low Ranking Threshold = 0.3, 
and High Ranking Threshold = 0.1 except for the second set that High Ranking Threshold is 
assigned to 0.0001. Each data set will be compared between cleaning data by Discovery FD 
and Manual FD. We expected the result of Discovery FD should be close to that of Manual 
FD. 
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Figure 17: %Error Corrected                           Figure 18: %False Positive 
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The results of cleaning test on three data sets as shown in Figure 17, 18, and 19 shows 
%Error Corrected, %False Positive and %Recall respectively. For 10% Dup, both Discovery 
FD and Manual FD correct duplicated data at 100%. For 10% Inc, Manual FD produced ~99% 
of %Error Corrected and %False Positive at ~0.011% while Discovery FD gave %Error 
Corrected at ~ 19% and %False Positive at ~0.006%.  

For the testing on 10% Dup, Inc, Manual FD is able to clean data at %Error Corrected as 
~99% and %False Positive as 0.04% while Discovery FD is able to clean data at %Error 
Corrected as ~60% and %False Positive as 0%.  

In conclusion, Manual FD is able to clean data efficiently. Although Discovery FD detects 
duplicated and correct data less efficient than Manual FD, it did not damage (low %False 
Positive) the data.   

6. CONCLUSION AND FUTURE WORK 

We have developed a cleaning tool using FD discovery. Our tool uses an FD discovery with a 
ranking technique to reduce the FD discovery’s number. Also, the discovery step can help to 
identify suspicious tuples for cleaning. The algorithm passes these errors to the cleaning step 
for repairing to reduce the number of sorting attributes and, as a result, decrease a work load. 

From our result, the first experiment showed that our algorithm can clean, especially 
duplicate data, efficiently. The FD discovery algorithm can find the useful FDs that can be 
used to clean data effectively almost equal to the manually setting ones. In the second 
experiment, we discovered that the tool might not be able to synthesize all correct FDs and 
somehow it depends on the input data. Nevertheless, the tool is able to clean data especially in 
the duplicated data without any given FD. For contaminated data, the tool does not damage 
any data even though it cannot clean all of them. The experiment also shows that the chosen 
threshold value should not be too high (for example, less than 0.05%). Any high value 
threshold may damage the data and generate incorrect FDs. The approximate threshold varies 
to the percentage of the contamination in data. So, to utilize it effectively, one may have to 
estimate its contamination to provide some proper scope of the parameters of the tool.  

In the future, the tool parameters must be explored to justify the proper values without 
human intervention. Since the tool generates FDs from data if some good sampling technique 
is applied, we may find and generate FDs from a smaller set of data rather than the whole data 
and it will help to reduce the time for generating, consequently it will help to improve the 
cleaning time. 
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