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ABSTRACT 

Microarray Technology allows us to measure the expression of thousands of genes simultaneously, and 
under specific conditions. Clustering is the main tool used to analyze gene expression data obtained from 
microarray experiments. By grouping together genes with the same behavior across samples, resultant 
clusters suggest new functions for some of the genes. Non-exclusive clustering algorithms are required, 
as a gene may have more than one biological function. Gene Shaving (Hastie et al. 2000) is a clustering 
algorithm which looks for coherent clusters with high variance across samples, allowing clusters to 
overlap. In this paper we present two Evolutionary Algorithm approaches, based on Genetics Algorithms 
(GA) and Estimation of Distribution Algorithms (EDA), whose aim is to find clusters of similar genes 
with large between-sample variance. We apply our methods GA-Shaving and EDA-Shaving to S. 
cerevisiae cell cycle dataset outperforming Gene-Shaving results in terms of quality and size of obtained 
clusters. Furthermore, we use GO Term Finder (Boyle et al. 2004) to evaluate the biological 
interpretation of the results. It computes the most statistically significant biological processes associated 
to every cluster by means of the annotations of the Gene Ontology (Gene Ontology Consortium 2004). 
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1. INTRODUCTION 

1.1 Microarray Technology 

Microarray technology makes use of the sequence resources created by the genome projects 
and other sequencing efforts to monitor the expression of genes in a particular cell type of an 
organism, at a particular time and under particular conditions.  
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A microarray is a glass slide on which single-stranded DNA molecules are attached at 
fixed locations called spots. There can be thousands of spots on a single microarray, each one 
containing a huge number of identical DNA molecules which identify one gene. Hybridization 
experiments with two samples consist on the following steps: firstly, the total mRNA from 
cells in two different conditions (for example, healthy and cancerous cells) is dyed with two 
different fluorescent labels. Secondly, the labeled mRNA is washed over the microarray. 
These labeled gene products hybridize to their complementary sequences in the spots. The 
fluorescence emitted from each spot when the microarray is excited by a laser, allows the 
measurement of the amount of sample from each condition bounded to the DNA of the spot.  

Measuring the fluorescence intensities of various microarrays, each one considering 
samples at a particular time or under particular conditions, we can characterize the dynamic 
behavior of a large number of genes in the genome. These gene expression profiles are usually 
presented in a matrix mnA *  where the n rows represent genes, the m columns the m different 

cell situations we have studied, and every element ija of the matrix A indicates the expression 
level of gene i under condition j.  

This way, DNA microarray data provide us with a global picture of the cell’s activities and 
open the way to a high-level understanding of its behavior. By analyzing these matrices we 
can learn more about cellular operation in organisms, but it turns out to be very complex due 
to the large amount of genes which even the simplest organisms have and to the unlimited 
number of conditions under we can study them (Berrar et al. 2003). 

1.2 Related Work 

The potential of clustering to reveal biologically meaningful patterns in microarray data, 
considering no other knowledge, was demonstrated by Eisen et al. (1998), who applied 
hierarchical clustering to identify functional groups of genes.  After that, other approaches 
have been proposed to cluster microarray data: k-means (Smet et al. 2002), kohonen maps 
(Tamayo et al. 1999), etc. (for a review see Jiang et al. 2004). By applying clustering, genes 
are grouped in sets which have similar expression profiles along conditions (coexpressed 
genes). This means that genes in the same set respond similarly in different circumstances, so 
they are likely to share a common function. In addition, clustering can also be used to group 
conditions with similar gene profiles, so we can also draw conclusions about them. Gene 
discovery, functional annotation of genes, disease diagnosis, drug discovery and tumor 
subtypes detection are some of the goals we pursue in this kind of analysis.  

However, the mentioned approaches group genes into mutually exclusive clusters, whereas 
in the real biological system a gene may play multiple roles in different biological processes. 
To address this, different methods have been proposed: Hastie et al. (2000), Dembele et al. 
(2003), etc. Our focus is on Gene Shaving (Hastie et al. 2000) whose aim is to identify 
coherent clusters with high between-sample variance, allowing genes to belong to more than 
one cluster. The algorithm finds a series of nested clusters on the basis of correlation with the 
leading principal component, so each one of them has the maximum variance of its mean 
gene, given the cluster size. The nested cluster with more similar genes and higher variance 
along samples is selected. Then the expression matrix is orthogonalized with respect to the 
mean of the selected cluster in order to search for a further cluster, which can share genes with 
the previous one. As they look for high between-sample variance clusters, these obtained 



IADIS International Journal on Computer Science and Information Systems 
 
 

 90

clusters will reveal genes with very different behavior along samples (thus ignoring genes 
involved in constantly activated processes as well as those involved in none of the active 
processes), so they become very useful for identifying distinct types of samples and the 
biological processes which may produce these differences.  

The aim of this paper is to present two new approaches based on Evolutionary Algorithms 
(EAs) for identifying clusters of genes with similar expression patterns and high variance 
along samples. The first one uses Genetic Algorithms (GAs) and the second one Estimation of 
Distribution Algorithms (EDAs). We will apply all these methods on yeast cell cycle 
microarray data by Cho et al. (1998), showing that our algorithms GA-shaving and EDA-
shaving produce larger clusters of more-similar genes with higher between-sample variance 
than those obtained by Gene Shaving. We will also evaluate the biological significance of 
obtained clusters. For this end, we use the Gene Ontology (Gene Ontology Consortium, 2004) 
and GO Term Finder (Boyle et al. 2004) to retrieve the most significant biological process 
term associated to each cluster, extracting relevant and significant insights from yeast 
expression data.  

The rest of the paper is organized as follows. In section 2 we summarize the proposal of 
Hastie et al. (2000) to obtain clusters with maximum between-sample variance. In section 3.1 
we present an alternative solution which uses Genetic Algorithms. In section 3.2 we present 
another solution employing Estimation of Distribution Algorithms. Section 4 contains 
experimental results on S. cerevisiae cell cycle expression data, and the biological 
interpretation of obtained clusters using GO Term Finder. Finally, section 5 presents 
conclusions and future work. 

2. INITIAL APPROACH: GENE-SHAVING  

Rather than simply looking for genes with similar expression patterns, the Gene Shaving 
approach searches for coherent clusters with high variance across samples. The algorithm 
takes the expression matrix mnA *  and the number of desired clusters M as input. Let kS be a 
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column averages of the expression values for this cluster. Then, for each cluster size k, the 
algorithm seeks a cluster kS having the highest variance of the column averages, i.e., kS  

which maximizes ( )
kSavar . 

For obtaining this cluster, Gene Shaving generates a sequence of nested clusters:  

1...... SSSS
ji kkn ⊃⊃⊃⊃  

of decreasing size, starting with k=n, the total number of genes,  and finishing with k=1 
gene. At each stage the largest principal component of each cluster of genes is computed. This 
eigen-gene is the normalized linear combination of genes with the largest variance across the 
samples. Then we discard a fraction ( ]1,0[∈α ) of the genes having lowest correlation 
(lowest absolute inner-product) with this eigen-gene, obtaining the next nested cluster. The 
process is repeated until we get a cluster with one gene.  
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Once the nested sequence of clusters has been completed, the algorithm selects one cluster 
from the sequence. This selection is made by calculating, by analogy with ANOVA (Analysis 
of Variance), the following measures of variance for each cluster kS :  

• Within Variance:   ( )∑ ∑
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ijj aka )/1(  in all expressions above. 

The Within Variance measures the variability between the genes of the cluster (cohesion of the 
cluster), so minimizing this measure we will obtain clusters with similar gene profiles. The 
Between Variance is the variance of the mean gene of the cluster (variance across samples), so 
we want to maximize this measure to get a cluster with high variability over the samples.  
 
To take these two measures into account, the percent of variance explained ( 2R ) is 
computed:  
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So large 2R  values imply high values of BV   and low values for WV .  

But we also need to know whether a value of 2R  for a given cluster kS is larger than we 

would expect by chance, if the rows and columns of A were independent. To overcome this 
problem, Hastie et al. (2000) proposed the following measure. 
Let Dk be the 2R  measure for kS , and bA* a permuted data matrix, obtained by randomly 

permuting the elements of each row of A. If we form B such matrices, we define GAP function 
as: 

*)( kkk DDSGAP −=  

Where *
kD is the mean 2R value for kS in the B randomly permuted matrices: BAA *1* ,...,  

This way, a large GAP value for kS will reveal a relevant (non-spurious) pattern.  

After selecting one cluster from the sequence, A is orthogonalized with respect to the mean of 
the selected cluster, promoting new patterns to be revealed in further iterations.  
 
The whole process is shown in Figure 1. 
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Figure 1. The Gene Shaving process (Hastie et al. 2000). 

3.  PROPOSED METHODS 

As can be noted from Figure 1, the generation of the sequence of nested clusters is strongly 
driven by the variance of the genes along conditions, as genes are shaved-off depending on 
their correlation with the leading principal component. However, we are not only interested in 
clusters with high between-sample variance, but also in high-coherence clusters, and this 
criterion is not used for obtaining the clusters sequence.  It is only considered at the end, when 
we compute the GAP statistic for every cluster of the sequence in order to select one of them.  
 
The shaving process can be seen as a multiple-step Feature Subset Selection (FSS) problem in 
which, given a set of genes kS with [ ]nk ,2∈ , we want to select a subset with 

)1( α−k genes: kk SS ⊂− )1(* α  which maximizes a given criterion. As we have mentioned, 
in Gene Shaving the optimization criterion is the variance of the cluster mean. We consider 
that maximizing GAP function instead of between-sample variance will provide overall better 
results. In this work, we address the FSS problem of finding clusters with high values for the 
GAP function with Evolutionary Algorithms (EA) and in particular, with Genetic Algorithms 
(GA) and Estimation of Distribution Algorithms (EDA), which have been proven to have an 
excellent performance on highly complex optimization problems.  

3.1 Genetic Algorithms approach: GA-Shaving. 

Genetic Algorithms (GAs), initially introduced by Holland (1975), are stochastic global search 
heuristics optimization methods based on the mechanics of natural selection and genetic 
recombination. Genetic algorithms typically maintain a constant-sized population of 
individuals which represent samples of the space to be searched. Each individual is evaluated 
on the basis of its fitness with respect to the given application domain. New individuals are 
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produced by selecting high performing individuals to recombine their “genetic material”, so 
they will retain many of the features of their “parents”. This eventually leads to a population 
that has improved fitness with respect to the given goal.  

For addressing the above FSS problem, we have implemented a GA with elitism. Its main 
characteristics are:  

- Representation for solutions: each individual is a binary string of length k 
representing whether each gene is selected in the cluster or not.  

- Selection: Baker’s stochastic universal sampling. This is a roulette wheel method 
with slots which are sized according to the fitness of each individual. 

- Crossover operator: given two parents, the offspring maintain the common values to 
both parents. 

- Mutation operator: BitFlip operator. Given an individual in the population, a fraction 
of its bit values are changed for their complementary values.  

- Fitness: GAP function.  
- Restart. For the restart strategy, we have chosen to move the best individual to the 

new population. In addition, 20% of the new population individuals will be obtained 
from mutating the best individual of current population. This restart will be applied 
when 10% of the generations to be made have taken place with no change in the best 
element of the population. 

 
There are two ways we can apply GAs to our optimization problem:  
 
1.-Single-step FSS: only one execution of a GA which takes the whole matrix as input and 
directly generates a resulting cluster maximizing GAP. We have implemented this approach 
but the search space is so vast that the GA could not converge to good solutions in a 
reasonable time. 
 

 
2.-Multiple-step FSS: we can generate a nested sequence of clusters: 

1...... SSSS
ji kkn ⊃⊃⊃⊃  by selecting/discarding, step by step, a fraction of the 

remaining genes with a GA guided with the GAP function.  
 

 
 

This approach provides good results as we will show in section 4. 
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3.2 EDA approach: EDA-Shaving. 

Estimation of Distribution Algorithms (EDAs) are a set of Evolutionary Algorithms mainly 
characterized by the use of explicit probability models to recover the information of the 
selected individuals and to sample new solutions (Larrañaga & Lozano 2001). In EDAs, there 
are neither crossover nor mutation operators. Instead, a probabilistic model is inferred from 
selected individuals of the current generation, and the new population of individuals is 
sampled from the estimated distribution (see Figure 2).  

The simplest way to compute the probability distribution consists in considering all the 
variables of a problem to be independent.  The joint probability distribution is therefore 
converted into the product of the marginal probabilities of n variables:   

∏
=

=
n

i
ill xpxp

1

)()( r  

where )(xpl
r

 represents the joint probability distribution of selected individuals in generation 

l, ),...,( 1 nxxx =r represents the n variables, and )( il xp are the independent univariate 
marginal distributions, which are estimated from marginal frequencies:  

( )Se
liil Dxpxp 1|)( −=  

where Se
lD 1−  is the set of selected individuals from previous generation ( 1−l ).   

As we are addressing a FSS problem, the univariate distribution )( il xp can be computed as 

the fraction of individuals from Se
lD 1−  for which the feature ix is selected. 

This algorithm was introduced by Muhlenbein (1998) and is called Univariate Marginal 
Distribution Algorithm (UMDA) (See Figure 3). 
 
We implemented the UMDA algorithm and we applied it to solve the FSS problem following 
the two schemes proposed in the previous section: single-step FSS and multiple-step FSS, 
obtaining good results with both approaches (see next section).  
 

 
Figure 2. Scheme of an EDA Algorithm. 
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UMDA Algorithm 
 

1. oD  Generate M individuals (Initial Population) at random 

2. Repeat for l=1,2,… until the stopping criterion is met 

 
Se
lD 1−  Select best MN ≤ individuals from 1−lD  

 Estimate the joint probability distribution: ( )Se
liil Dxpxp 1|)( −=  

 lD  Sample M individuals from )(xpl
r

 

 

Figure 3. Pseudocode for UMDA (Larrañaga & Lozano 2001). 

4.  EXPERIMENTS 

We have tested Gene Shaving, GA-Shaving and EDA-Shaving against yeast S. cerevisiae cell 
cycle expression data from Cho et al. (1998). This dataset contains the expression levels of 
2879 yeast genes under 17 cell cycle conditions, covering approximately two full cell cycles. 

We focus this comparison on the GAP value and size of obtained clusters. Furthermore, we 
have also considered the biological interpretation of the results. We use GO Term Finder 
(Boyle et al. 2004) to find out the most significantly enriched Gene Ontology terms (Gene 
Ontology Consortium 2004) associated with the genes belonging to every obtained cluster. 
This tool allows us to determine whether any GO term annotates a specified list of genes at a 
frequency greater than would be expected by chance, by calculating the associated p-value.  

Once we have, for a given set of genes, the p-values for all GO terms, our attention will 
focus on those from the biological process ontology, and we will select the one with lower p-
value for representing this set of genes. We focus on this ontology, and not on cellular 
component or molecular function, because genes belonging to a cluster of co-expressed genes 
respond similarly along the samples, so they are likely to participate in the same biological 
process.  

Associating a biological process to each obtained cluster, with a p-value representing the 
statistical significance of this association, is a way of validating our clustering method. As we 
will see, a large fraction of our clusters can be assigned to GO biological processes with high 
reliability, so we can state that our algorithms describe accurately the known classification (in 
this case, the one given by the Gene Ontology) and, in this way, are reliable for extracting new 
biological insights. The association of biological processes to clusters can also be used to 
annotate genes with unknown function: if one of these genes is highly co-expressed with a 
group of genes which has a significant biological function, it will probably play the same role.  

4.1 Results Comparison. 

Table 1 shows average GAP and size (number of genes) for 30 clusters obtained in three 
executions of each algorithm: Gene Shaving, GA-Shaving and EDA-Shaving (with multiple-
step and single-step shaving).   
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Table 1. Averages (and standard deviations, in parenthesis) of GAP values and cluster sizes for 30 
clusters 

Algorithm GAP  Size 
Gene Shaving 62.04   (23.8) 14.86  (10.3) 
GA-Shaving 80.78   (3.7) 15.43  (4.3) 

EDA-Shaving (multiple-step shaving) 82.02   (3.4) 16.9    (6.2) 
EDA-Shaving (single-step shaving) 76.32   (6.1) 34.3    (8.6) 

 
GA-Shaving and EDA-Shaving (both single-step and multiple-step shavings) outperform Gene 
Shaving in average GAP. The clusters identified by the proposed algorithms also show lower 
variability in their GAP values than those obtained by Gene Shaving. Therefore, the proposed 
algorithms find clusters with higher coherence and higher between-sample variance than 
Gene-Shaving.  Moreover, when we apply an EDA to solve the FSS problem in only one step, 
we obtain clusters with a little lower GAP than our multiple-step approaches (GA-Shaving and 
multiple-step EDA Shaving), but with higher GAP than Gene Shaving and higher cluster size 
than any other method.  

4.2 Biological interpretation of obtained clusters. 

As we have mentioned above, by using GO Term Finder we can assign the GO term with 
lowest p-value to every obtained cluster. Significant biological signals are revealed when we 
consider high-GAP and low-p-value clusters (Figure 4). This way we can validate our 
algorithms and interpret the results to extract new and reliable biological knowledge. For 
example, looking at the first plot in Figure 4 we can confirm the correspondence between the 
biological process DNA metabolism, which is the one with lowest p-value for this cluster, and 
the expression behavior of the genes belonging to the cluster, which are over-expressed in 
samples 2-3 and 10-12. These samples are associated to the S phase of cell cycle, in which 
DNA replication takes place. 

 
DNA metabolism. P-value: 1,8e-13. GAP:83,38. size:50 

genes. 
Single-step EDA-Shaving 

 
Sulfur metabolism. P-value: 7,2e-15. GAP:83,4. size:14 

genes. 
Multiple-step EDA-Shaving 

Figure 4. Expression profiles for some biologically significant clusters obtained with EDA-Shaving. 

An example of how EDA-Shaving (single-step scheme) outperforms all the other methods in 
cluster size can be seen in Figure 5. All the algorithms have found a cluster significantly 
associated to DNA replication. It can be observed that, unless Gene-Shaving, AG-Shaving and 
multiple-step EDA-Shaving present higher GAP values for their clusters, single-step EDA-
Shaving groups together much more genes (18 for Gene-Shaving against 38 for EDA-Shaving) 
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with highly similar patterns, good GAP value and very low p-value. So the cluster found by 
single-step EDA-Shaving seems to be the most useful and valuable for extracting new 
biological insights.  

 
Gene-Shaving. P-value: 3,7e-09. GAP: 89,73. size:18 

genes 

 
AG-Shaving. P-value: 4,2e-09. GAP: 87,1. size:18 genes 

 
Multiple-step EDA-Shaving. P-value: 1,5e-10. GAP: 

89,27. size:24 genes 
 

Single-step EDA-Shaving. P-value:9,3e-14. GAP:85,2.      
size:38 genes 

Figure 5. Gene expression profiles for significant clusters representing ‘DNA replication’, obtained with 
Gene-Shaving, AG-Shaving, multiple-step EDA-Shaving and single-stepEDA-Shaving. 

Figure 6 shows another example. Both clusters are significantly associated with DNA 
unwinding but the one obtained by EDA-Shaving has higher GAP and size than the one 
obtained by Gene-Shaving. 
 

 
Gene-Shaving. P-value: 4,6e-11. GAP:42,58. size:10 

genes 

 
Single-step EDA-Shaving. P-value: 1,64e-05. GAP: 73. 

size:29 genes 
 

Figure 6. Gene expression profiles for significant clusters representing ‘DNA unwinding’, obtained with 
Gene-Shaving and single-step EDA-Shaving. 
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For comparing Gene-Shaving and EDA-Shaving in terms of biological significance of the 
obtained clusters, we have used correspondence plots (Tanay et al. 2002). These plots depict 
the distribution of p-values of the clusters using a given gene annotation (in our case, Gene 
Ontology annotations made by Saccharomyces Genome Database –SGD-). The plot 
represents, for each value of p, the fraction of clusters whose p-value is at most p out of the, in 
our case, 30 clusters obtained with each method in total. Figure 7 shows correspondence plots 
for Gene-Shaving¸ EDA-Shaving (single step scheme) and random clusters of the same size as 
EDA-Shaving. We can see that Gene-Shaving and EDA-Shaving present a very similar 
distribution of p-values, different from the one associated to poor significant random clusters. 
Therefore, Gene-Shaving and EDA-Shaving group together genes with highly related 
biological functions, but as previous results have shown, EDA-Shaving finds clusters with 
more genes than Gene-Shaving, so we consider that EDA-Shaving results are more informative 
from a biological point of view.  

 

Figure 7. Correspondence plots for clusters generated with Gene-Shaving, EDA-Shaving and random 
clusters of fixed size (35 genes). These plots depict the distributions of p-values of the GO terms 

representing each obtained cluster. 

5.  CONCLUSION 

We have presented two new clustering algorithms: GA-Shaving and EDA-Shaving which look 
for coherent clusters of high between-samples variance. Experimental results demonstrate that 
the proposed algorithms outperform Gene-Shaving in terms of GAP value and, in the case of 
single-step EDA-Shaving, also in the size of obtained clusters. Moreover, the resulting clusters 
are biologically significant. The paper shows the methodology we use for validating and 
interpreting the results from a biological point of view with GO Term Finder.  

The main drawback of all studied methods comes from the fact that the original matrix is 
orthogonalized with respect to the mean of the last obtained cluster in order to search for a 
further cluster. This limits the total number of clusters that can be obtained.  
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Gene discovery, functional annotation of genes, disease diagnosis, and tumor subtypes 
detection are some of the goals we pursue with the analysis of gene expression matrices by 
using such clustering algorithms.  
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