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ABSTRACT 

This paper discusses how High Performance Computing can help to solve Engineering problems, where 
it is necessary to reduce the execution time spent in the solution of sparse linear systems. We have 
chosen three free-distribution numerical parallel libraries called PETSc (Portable, Extensible Toolkit for 
Scientific Computation) [Satish2001], pARMS (Parallel Algebraic Recursive Multilevel Solver) 
[Saad2003], and one direct sparse solver named SuperLU [Demmel2003]. These libraries have been 
applied to a realistic test case of Nuclear Engineering where it is necessary to solve efficiently very-large 
sparse linear systems to study steady-state neutron diffusion processes. Numerical experiments have 
shown the effectiveness of using parallel and distributed computing.  
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1. INTRODUCTION 

Physical phenomena are often modelled by equations that relate several partial derivatives of 
physical quantities, such as forces, momentums, velocities, energy, temperature, etc. These 
equations rarely have a closed-form (explicit) solution. The Partial Differential Equations 
(PDEs) constitute the biggest source of sparse matrix problems. The typical way to solve such 
equations it is to discretize them, i.e., to approximate them by equations that involve a finite 
number of unknown. The matrices that arise from these discretizations are generally large and 
sparse, i.e., they have very few nonzero entries. There are several different ways to discretize a 
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Partial Differential Equation. The simplest method uses finite difference approximations for 
the partial differential operators. The Finite Element Method replaces the original function by 
a function which has some degree of smoothness over the global domain, but which is 
piecewise polynomial on simple cells, such as small triangles or rectangles. In between these 
two methods, there are a few conservative schemes called Finite Volume Methods, which 
attempt to emulate continuous conservation laws of physics. 

Traditionally, direct methods [Duff1986][Demmel2003] have been used for solving linear 
systems of equations due to their robustness and predictable behaviour. However, iterative 
methods [Saad1996] have shown a good competency when they are combined with 
preconditioning techniques and Krylov subspace iterations, giving rise to efficient and simple 
general purpose procedures. 

The main objective of this work, it is to show the advantages of using High Performance 
Computing tools such as numerical parallel libraries and PCs clusters to accelerate computing 
processes in Engineering problems. In particular, we have studied the PETSc, pARMS and 
SuperLU parallel libraries applied to the solution of the linear systems of equations related to 
the lambda modes equation that appears in stability and security analysis of nuclear reactors. 
In order to attain our objective, we have made numerical experiments with the above libraries. 
They are analyzed and evaluated from speedup and efficiency [Kumar1994] points of view. 

The rest of this paper is organized as follows. Section 2 gives a general overview of the 
methods and preconditioners contained into PETSc and pARMS, as well as some important 
aspects of SuperLU. The realistic test case is covered in Section 3. Section 4 is devoted to 
parallel numerical experiments. Some conclusions are drawn in Section 5. 

2. SPARSE SOLVERS 

At the moment, many modern computational problems that arise in science and engineering 
should efficiently utilize the combined power of multi-processor computer architectures and 
effective algorithms. For many large-scale applications, solving large sparse linear systems is 
the most intensive computational task. The important criteria for a suitable solver include 
numerical efficiency, robustness, and good parallel performance. There is a limited selection 
of general-purpose sparse solvers. Among the implementations that contain general purpose 
solvers are PETSc and pARMS. These tools implement iterative solvers in their majority. By 
other hand, SuperLU is a general purpose library for the direct solution of large, sparse, 
nonsymmetric systems of linear equations on high performance machines. 

2.1 Review of PETSc 

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data 
structures and routines that provide the building blocks for the implementation of large-scale 
application codes on parallel (and serial) computers. PETSc uses the MPI [Groupp1994] 
standard for all message-passing communication.  

Some of the PETSc modules deal with vectors, matrices (generally sparse), distributed 
arrays (useful for parallelizing regular grid-based problems), Krylov subspace methods, 
preconditioners including multigrid and sparse direct solvers, etc. 

Figure 1 illustrates the library’s hierarchical organization, which enables users to employ 
the level of abstraction that is most appropriate for a particular problem. 



FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES 
EQUATION 

 

 78

 

 
Figure 1. Organization of the PETSc libraries. 

Table 1 shows the most popular iterative methods contained in PETSc. The 
preconditioners that have been applied to the real test case are Jacobi and Block-Jacobi. 

Table 1. PETSc iterative methods. 

Method PETSc option
Conjugate Gradient KSPCG 
Bi-Conjugate Gradient KSPBICG 
Generalized Minimal Residual KSPGMRES 
BiCGSTAB KSPBCGS 
Conjugate Gradient Squared KSPCGS 
Transpose-Free Quasi-Minimal Residual KSPTFQMR 
Conjugate Residual KSPCR 

2.2 Review of pARMS 

The Parallel Algebraic Recursive Multilevel Solver (pARMS) offers a suite of distributed-
memory iterative accelerators and local preconditioners targeting the solution of general 
sparse linear systems. Multi-level Schur complement techniques available in pARMS, they are 
based on techniques which exploit block independent sets.  

Table 2 shows the available preconditioners in pARMS, where add_X indicates an 
Additive Schwarz preconditioner with local preconditioner X, where X can be ILU0, ILUT or 
ARMS. lsch_X indicates left Schur complement preconditioner with X as local 
preconditioner. rsch_X indicates right Schur complement preconditioner with X as local 
preconditioner. sch_gilu0 stands for distributed ILU0 preconditioner on interface nodes. 
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sch_sgs stands for distributed Gauss-Seidel preconditioner on interface nodes. The 
accelerators employed during the experiments were a distributed version of flexible GMRES 
(fgmresd), a distributed version of deflated GMRES (dgmresd) and a distributed version of bi-
CG stabilized (bcgstabd).  

Table 2. pARMS preconditioners. 

Schwarz Additive Schur Complement 
based 

Schur Complement 
based with enhancements 

add_ilu0 lsch_ilu0 sch_gilu0 
add_ilut lsch_ilut sch_sgs 
add_iluk lsch_arms  
add_arms rsch_ilu0  
 rsch_ilut  
 rsch_iluk  
 rsch_arms  

 

2.3 Review of SuperLU 

SuperLU is a general library for the direct solution of large, sparse, nonsymmetric systems of 
linear equations on high performance machines. The library is callable from either C or 
Fortran. The library routines will perform an LU decomposition with partial pivoting and 
triangular system solves through forward and back substitution. The LU factorization routines 
can handle non-square matrices but the triangular solves are performed only for square 
matrices. The matrix columns may be preordered (before factorization) either through library 
or user supplied routines. This preordering for sparsity is completely separate from the 
factorization. Working precision iterative refinement subroutines are provided for improved 
backward stability. Routines are also provided to equilibrate the system, estimate the condition 
number, calculate the relative backward error, and estimate error bounds for the refined 
solutions.  

The SuperLU_DIST library is designed for distributed memory parallel computers. The 
parallel programming model is SPMD and the library is implemented in ANSI C, using MPI 
for communication. The library includes routines to handle both real and complex matrices in 
double precision.  

To use SuperLU_DIST, five basic step are required: 
 

• Initialize the MPI environment and the SuperLU process grid. 
• Set up the input matrix and the right-hand side 
• Set the options argument 
• Call the SuperLU routine pdgssvx 
• Release the process grid and terminate the MPI environment 

 
In Section 4.3, we show some numerical results with the SuperLU_DIST library, when it is 

applied to our particular test case. 
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3. TEST CASE 

In this section we introduce the Lambda Modes Equation and its solution using a classic 
iterative algorithm, where the most expensive step is represented by a matrix-vector operation. 
For the test case chosen and introduced in this section, the matrix is not in explicit form due to 
the use of two energy groups. 

3.1 Lambda modes equation 

Reactors calculations are based on the multigroup neutron diffusion equation [Hébert1987]. If 
this equation is modeled with two energy groups, then the problem to be dealt with is to find 
the eigenvalues and eigenfunctions of 

  
Lψ i =

1
λi

Mψ i  ,                                                                     (1) 

which is known as the Lambda Modes equation [Vidal1997], where 
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with boundary conditions φi Γ = 0  where Γ is the reactor border. 

For a numerical treatment, this equation must be discretized in space. Nodal methods are 
extensively used in this case. These methods are based on approximations of the solution in 
each node in terms of a suitable base of functions such as Legendre’s polynomials 
[Verdú1993]. It is assumed that nuclear properties are constant in every cell. Finally, suitable 
continuity conditions for fluxes and currents are enforced. 

This process allows the transformation of the original system of partial differential 
equations (1) into an algebraic large sparse generalized eigenvalue problem 

,  1
i

i
i ML ψ

λ
ψ =                                                                   (4) 

where L and M are matrices of order 2N with the following block structure 
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Depending on flux continuity conditions imposed among the discretization cells of the 
nuclear reactor, the matrices L11 and L22 will be symmetric or not. Due to intrinsic properties 
of the physical problem, these matrices are diagonal dominant and positive definite. On the 
other hand, under certain conditions, the null block of operator L can be a diagonal matrix as 
L21, M11, and M12 blocks. All matrices are sparse and very large. This problem must be solved 
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in modal methods of transient analysis. By eliminating ψ2 i
in (5), we obtain the following N-

dimensional standard eigenvalue problem 
 

Sψ1i
= λiψ1i

,                                                                 (6) 
where the matrix S is given by  
 

S = L11
−1(M11 + M12L22

−1L21) .                                                   (7) 
One possible method for solving the standard eigenvalue problem represented in (6), is the 

Arnoldi Iteration [Saad1996] (Algorithm 1) where the most expensive operation is represented 
by a sparse matrix-vector operation Svj  (line 3).  

 
Algorithm 1. (Arnoldi Iteration) 
1. Choose a vector v1 of norm 1  

2. For j=1,2, …, m Do: 
3. Compute hij=(Svj,vi)for i=1,2,…,j /* expensive matrix-vector 

operation */  

4. Compute wj:=Svj-∑ =
j
i 1 hijvi 

5. hj+1,j= wj 2  

6. If hj+1,j=0 then Stop  

7. vj+1=wj/hj+1,j  

8. EndDo 
 
Nevertheless, due to the matrix S is not in explicit form, it is necessary to carry out the 

steps of the Algorithm 2, which consists of three diagonal-vector operations, one sum of 
vectors, and the solution of large sparse linear systems related to the matrices L11 and L22 (lines 
2 and 5). These last operations are the most expensive and their fast solution might decrease 
the computation time of the eigenvalue problem established in (6). 

 
Algorithm 2. (Sv operation) 
1. w1:=L21v  

2. w2:=L22-1w1  /* solve a large sparse linear system */  

3. w3:=M12w2  

4. w4:=M11v  

5. r:=L11-1(w3+w4) /* solve a large sparse linear system */     

3.2 Ringhals-I reactor 

The test case corresponds to the Sweden nuclear reactor of Ringhals-I [Lefvert1996]. It has 
been  discretized in a 3D form using a nodal collocation method as discretization technique 
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based on second order Legendre polynomials [Hébert1987] [Verdú1994]. The dimension of 
the associated matrix, L in (4), is 157248 with 1811072 non-zero elements (see Figure 2).   
 

 

Figure 2. Ringhals-I reactor axial plane and block Lii non-zero patern.  

4. NUMERICAL RESULTS 

Numerical experiments have been performed on a cluster of PCs, formed by ten PCs at the 
Polytechnic University of Valencia. Each computing node has two 2 GHz Intel Xeon 
processors, and each processor has 1 GB of RAM memory. The tolerance used for the 
stopping criterion is ε = 1.e-10. 

4.1 Solution with pARMS 

We have observed that the pARMS methods based on Schur Complement techniques, with or 
without enhancements, did not converge for any number of processors whereas the most 
methods based on Additive Schwarz, with the exception of the method add_arms, converged 
to the solution with the requested tolerance.  

Table 3 shows the execution times using one, eight and ten processors. For the case of p=1 
processor, the combination of add_ilu0 preconditioner with bcgstabd accelerator was the 
fastest one. With this combination, the solution of the large sparse linear systems L11 and L22 
converged in 28 and 21 iterations, respectively. Use of add_iluk preconditioner presented 
memory problems due to fill-in effect. This problem has been solved with the use of more than 
one processor. Execution times with more than one processor (p= 8, 10) have shown that both 
fgmresd and add_ilu0 appear to be competitive. In addition, it has observed that add_iluk 
preconditioner was the most expensive due to k level fill-in. 

Table 3. Execution times (seconds) in pARMS.  

 (Using p=1 processor)  (Using p=8 processors)  (Using p=10 processors) 
Preconditioners bcgstabd  dgmresd fgmresd  bcgstabd dgmresd fgmresd  bcgstabd  dgmresd fgmresd
add_ilu0 1.77 2.07 1.95  0.47 0.55 0.47  0.44 0.51 0.39 
add_ilut 2.33 2.27 2.49  0.82 0.86 0.71  0.70 0.75 0.64 
add_iluk Memory  

problems 
Memory  
problems 

Memory 
problems

 39.64 35.99 34.71  28.93 26.98 25.32 
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Table 4 shows the parallel performance achieved with p=4, 8, 10 processors and the Figure 
3 shows the execution times of this experiments. We can observe that the coefficients of 
speedup and efficiency are poor. However, we believe that using a different discretization 
method, we can achieve better execution times. 

Table 4. Speedup and efficiency with pARMS. 

P Tp Sp Ep 
1 1.76 1.00 100%
4 0.77 2.29 57%
8 0.47 3.79 47%

10 0.39 4.53 45%

 
Figure 3. Execution times with p=1,4,8,10 in pARMS.  

4.2 Solution with PETSc 

We have tested many Krylov subspace methods and preconditioners with the PETSc library. 
Table 5 shows execution times with p=1,4,8,10 processors without preconditioning. In these 
cases, the use of parallel computing is advantageous in the solution of very-large sparse linear 
systems. For example, from an execution time of 2.02 seconds with p=1 processor, it 
decreases to 0.33 seconds using p=10 processors. Also, we have observed that the most 
competitive method is the Conjugate Gradient (CG) for any number of processors, due to the 
L11 and L22 block properties. It is interesting to note that the Conjugate Residual (CR) method 
is competitive as well.  

Table 5. Execution times (seconds) in PETSc (without Preconditioner). 

Methods p=1 p=4 p=8 p=10
CG 2.02 0.64 0.38 0.33 
BICG 3.94 1.26 0.73 0.63 
GMRES 4.42 1.26 0.63 0.55 
BCGS 2.67 0.82 0.48 0.44 
CGS 2.60 0.79 0.47 0.41 
TFQMR 2.91 0.87 0.49 0.43 
CR 2.23 0.69 0.42 0.36 

We have combined the above methods with the Jacobi preconditioner. The execution times 
are showed in the Table 6, where we can see the effect of the preconditioner on the 
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convergence rate. For example, with p=1 processor, the execution time using non-
preconditioned CG is 2.02 seconds (Table 5), whereas using a Jacobi-preconditioner CG the 
execution time decreases to 1.42 seconds. In addition, it is important to note that with ten 
processors (p=10), the execution time is reduced even more. This means a time reduction of 
almost 83% with regard to the sequential time using the same method and preconditioner. 

Table 6. Execution times (seconds) in PETSc (with Jacobi preconditioner). 

Methods p=1 p=4 p=8 p=10
CG 1.42 0.45 0.26 0.24 
BICG 2.71 0.86 0.50 0.44 
GMRES 2.80 0.80 0.42 0.36 
BCGS 1.88 0.58 0.35 0.30 
CGS 1.64 0.50 0.30 0.26 
TFQMR 1.84 0.54 0.31 0.28 
CR 1.53 0.48 0.28 0.26 

 
Applying a Block Jacobi preconditioner in combination with the PETSc methods, we 

obtain the execution times showed in Table 7. For p=1 processor, the runtime is 1.20 seconds, 
this means a reduction of 41% with regard to the non-preconditioned case. Using p=10 
processors, we obtain the same benefit that in the Jacobi preconditioner case. 

Table 7. Execution times (seconds) in PETSc (with Block-Jacobi preconditioner). 

Methods p=1 p=4 p=8 p=10
CG 1.20 0.45 0.24 0.21 
BICG 2.32 0.81 0.44 0.37 
GMRES 2.75 0.64 0.30 0.28 
BCGS 1.38 0.51 0.28 0.24 
CGS 1.36 0.46 0.25 0.22 
TFQMR 1.47 0.47 0.26 0.23 
CR 1.26 0.45 0.25 0.22 

Conjugate Gradient (CG) and Conjugate Residual (CR) represented the most competitive 
methods mostly. The overall parallel performance is represented in Table 8 and we can see 
that the results are good enough. The execution times are showed in Figure 4. 

Table 8. Parallel performance obtained with PETSc. 

P Tp Sp Ep 
1 1.20 1.00 100%
4 0.45 2.68 67%
8 0.24 5.04 63%

10 0.21 5.68 57%
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Figure 4. Execution times with p=1,4,8,10 in PETSc.  

4.3 Solution with SuperLU 

From the application of SuperLU to the test case, we found the parallel performance results 
showed in Table 9. However, the parallel execution times (Tp) are not specified in seconds, but 
in minutes. Also, we need to say that it was not possible to calculate the sequential execution 
time of SuperLU applied to our test case, due to memory problems and fill-in effect. So, in 
order to present the parallel performance using SuperLU, we consider the execution time with 
two processors as the basic execution time and from it, we derive the others parallel 
performance parameters. 

Table 9. Parallel performance with SuperLU. 

P Tp Sp Ep 
2 9.73 1.00 100%
4 5.00 1.89 94%
6 3.67 2.65 88%
8 2.95 3.20 80%

10 2.48 3.81 76%

 

Figure 5. Execution times (minutes) with 2, 4, 6, 8 and 10 processors using SuperLU.  
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From Table 9, we can observe that the use of the parallel SuperLU library applied to our 
particular test case it is not sufficient to attain the objective of accelerate the solution process 
because it is not efficient. However, aspects such as scalability, efficiency and speedup are 
good using this library as we can see in Figure 5. 

5. CONCLUDING REMARKS 

In this work we have applied the numerical parallel libraries of PETSc, pARMS and SuperLU 
to solve the sparse linear systems related to a realistic case of Nuclear Engineering, 
specifically to a problem of Neutron Diffusion equation in steady-state. The numerical parallel 
libraries of PETSc and pARMS implement efficient iterative methods. By other hand, 
SuperLU implements a sparse LU factorization. In this work, we have used a distributed 
SuperLU version named SuperLU_DIST. Also, all these libraries are free distribution solvers. 

Numerical experiments have shown that the PETSc implementation codes have been the 
most efficient ones for the test case. On the other hand, pARMS implementation codes are not 
so fast, but we think that using a different discretization method we can attain a better 
performance.  

When we use a sparse direct solver such as SuperLU to solve the sparse linear systems we 
found that it does not accelerate the solution process. For that reason, the use of SuperLU is 
not appropriate for our test case. However, all libraries have shown a good accuracy. 

Mostly, the fastest method has been the Conjugate Gradient method (CG), combined with 
a Block Jacobi preconditioner in PETSc, due to the properties of L11 and L22 matrices. 

In the application of pARMS methods to the test case, we have found that the fastest 
method has been the Additive Schwarz method combined with an ILU0 preconditioner type, 
but overall performance has been poor. 

The use of preconditioners combined with iterative methods has helped to accelerate the 
rate of convergence in the solution of the sparse linear systems of the test case. Parallel 
performance of PETSc codes will allow decreasing the computing time of the global process 
of finding the eigenvalues and eigenfunctions of the Lambda Modes Equation in large-scale 
simulations. 

For this particular test case, iterative methods have showed to be supreme with regard to a 
direct sparse solver such as SuperLU. 

Future works will contemplate experiments with the implementation of others types of 
methods and preconditioners such as second order methods and inverse preconditioners. 
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