
IADIS International Journal on Computer Science and Information Systems
Vol. 1, No. 2, pp. 76-87
ISSN: 1646-3692

 76

FREE DISTRIBUTION PARALLEL SPARSE
SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

Omar Flores Sánchez1,2 and Vicente E. Vidal Gimeno1

1Universidad Politécnica de Valencia, Departamento de Sistemas y Computación—DSIC, Camino de
Vera s/n 46022, Valencia, España
2Instituto Tecnológico de Tuxtepec, Departamento de Sistemas y Computación—DSC, Av. Dr. Victor
Bravo Ahuja s/n, Col. 5 de Mayo, A.P. 69, C.P.68300, Tuxtepec, Oaxaca, México

ABSTRACT

This paper discusses how High Performance Computing can help to solve Engineering problems, where
it is necessary to reduce the execution time spent in the solution of sparse linear systems. We have
chosen three free-distribution numerical parallel libraries called PETSc (Portable, Extensible Toolkit for
Scientific Computation) [Satish2001], pARMS (Parallel Algebraic Recursive Multilevel Solver)
[Saad2003], and one direct sparse solver named SuperLU [Demmel2003]. These libraries have been
applied to a realistic test case of Nuclear Engineering where it is necessary to solve efficiently very-large
sparse linear systems to study steady-state neutron diffusion processes. Numerical experiments have
shown the effectiveness of using parallel and distributed computing.

KEYWORDS

Parallel Computing, Krylov Subspace Methods, Very-Large Sparse Linear Systems, Lambda Modes
Equation.

1. INTRODUCTION

Physical phenomena are often modelled by equations that relate several partial derivatives of
physical quantities, such as forces, momentums, velocities, energy, temperature, etc. These
equations rarely have a closed-form (explicit) solution. The Partial Differential Equations
(PDEs) constitute the biggest source of sparse matrix problems. The typical way to solve such
equations it is to discretize them, i.e., to approximate them by equations that involve a finite
number of unknown. The matrices that arise from these discretizations are generally large and
sparse, i.e., they have very few nonzero entries. There are several different ways to discretize a

IADIS International Journal on Computer Science and Information Systems

 77

Partial Differential Equation. The simplest method uses finite difference approximations for
the partial differential operators. The Finite Element Method replaces the original function by
a function which has some degree of smoothness over the global domain, but which is
piecewise polynomial on simple cells, such as small triangles or rectangles. In between these
two methods, there are a few conservative schemes called Finite Volume Methods, which
attempt to emulate continuous conservation laws of physics.

Traditionally, direct methods [Duff1986][Demmel2003] have been used for solving linear
systems of equations due to their robustness and predictable behaviour. However, iterative
methods [Saad1996] have shown a good competency when they are combined with
preconditioning techniques and Krylov subspace iterations, giving rise to efficient and simple
general purpose procedures.

The main objective of this work, it is to show the advantages of using High Performance
Computing tools such as numerical parallel libraries and PCs clusters to accelerate computing
processes in Engineering problems. In particular, we have studied the PETSc, pARMS and
SuperLU parallel libraries applied to the solution of the linear systems of equations related to
the lambda modes equation that appears in stability and security analysis of nuclear reactors.
In order to attain our objective, we have made numerical experiments with the above libraries.
They are analyzed and evaluated from speedup and efficiency [Kumar1994] points of view.

The rest of this paper is organized as follows. Section 2 gives a general overview of the
methods and preconditioners contained into PETSc and pARMS, as well as some important
aspects of SuperLU. The realistic test case is covered in Section 3. Section 4 is devoted to
parallel numerical experiments. Some conclusions are drawn in Section 5.

2. SPARSE SOLVERS

At the moment, many modern computational problems that arise in science and engineering
should efficiently utilize the combined power of multi-processor computer architectures and
effective algorithms. For many large-scale applications, solving large sparse linear systems is
the most intensive computational task. The important criteria for a suitable solver include
numerical efficiency, robustness, and good parallel performance. There is a limited selection
of general-purpose sparse solvers. Among the implementations that contain general purpose
solvers are PETSc and pARMS. These tools implement iterative solvers in their majority. By
other hand, SuperLU is a general purpose library for the direct solution of large, sparse,
nonsymmetric systems of linear equations on high performance machines.

2.1 Review of PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is a suite of data
structures and routines that provide the building blocks for the implementation of large-scale
application codes on parallel (and serial) computers. PETSc uses the MPI [Groupp1994]
standard for all message-passing communication.

Some of the PETSc modules deal with vectors, matrices (generally sparse), distributed
arrays (useful for parallelizing regular grid-based problems), Krylov subspace methods,
preconditioners including multigrid and sparse direct solvers, etc.

Figure 1 illustrates the library’s hierarchical organization, which enables users to employ
the level of abstraction that is most appropriate for a particular problem.

FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

 78

Figure 1. Organization of the PETSc libraries.

Table 1 shows the most popular iterative methods contained in PETSc. The
preconditioners that have been applied to the real test case are Jacobi and Block-Jacobi.

Table 1. PETSc iterative methods.

Method PETSc option
Conjugate Gradient KSPCG
Bi-Conjugate Gradient KSPBICG
Generalized Minimal Residual KSPGMRES
BiCGSTAB KSPBCGS
Conjugate Gradient Squared KSPCGS
Transpose-Free Quasi-Minimal Residual KSPTFQMR
Conjugate Residual KSPCR

2.2 Review of pARMS

The Parallel Algebraic Recursive Multilevel Solver (pARMS) offers a suite of distributed-
memory iterative accelerators and local preconditioners targeting the solution of general
sparse linear systems. Multi-level Schur complement techniques available in pARMS, they are
based on techniques which exploit block independent sets.

Table 2 shows the available preconditioners in pARMS, where add_X indicates an
Additive Schwarz preconditioner with local preconditioner X, where X can be ILU0, ILUT or
ARMS. lsch_X indicates left Schur complement preconditioner with X as local
preconditioner. rsch_X indicates right Schur complement preconditioner with X as local
preconditioner. sch_gilu0 stands for distributed ILU0 preconditioner on interface nodes.

IADIS International Journal on Computer Science and Information Systems

 79

sch_sgs stands for distributed Gauss-Seidel preconditioner on interface nodes. The
accelerators employed during the experiments were a distributed version of flexible GMRES
(fgmresd), a distributed version of deflated GMRES (dgmresd) and a distributed version of bi-
CG stabilized (bcgstabd).

Table 2. pARMS preconditioners.

Schwarz Additive Schur Complement
based

Schur Complement
based with enhancements

add_ilu0 lsch_ilu0 sch_gilu0
add_ilut lsch_ilut sch_sgs
add_iluk lsch_arms
add_arms rsch_ilu0
 rsch_ilut
 rsch_iluk
 rsch_arms

2.3 Review of SuperLU

SuperLU is a general library for the direct solution of large, sparse, nonsymmetric systems of
linear equations on high performance machines. The library is callable from either C or
Fortran. The library routines will perform an LU decomposition with partial pivoting and
triangular system solves through forward and back substitution. The LU factorization routines
can handle non-square matrices but the triangular solves are performed only for square
matrices. The matrix columns may be preordered (before factorization) either through library
or user supplied routines. This preordering for sparsity is completely separate from the
factorization. Working precision iterative refinement subroutines are provided for improved
backward stability. Routines are also provided to equilibrate the system, estimate the condition
number, calculate the relative backward error, and estimate error bounds for the refined
solutions.

The SuperLU_DIST library is designed for distributed memory parallel computers. The
parallel programming model is SPMD and the library is implemented in ANSI C, using MPI
for communication. The library includes routines to handle both real and complex matrices in
double precision.

To use SuperLU_DIST, five basic step are required:

• Initialize the MPI environment and the SuperLU process grid.
• Set up the input matrix and the right-hand side
• Set the options argument
• Call the SuperLU routine pdgssvx
• Release the process grid and terminate the MPI environment

In Section 4.3, we show some numerical results with the SuperLU_DIST library, when it is

applied to our particular test case.

FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

 80

3. TEST CASE

In this section we introduce the Lambda Modes Equation and its solution using a classic
iterative algorithm, where the most expensive step is represented by a matrix-vector operation.
For the test case chosen and introduced in this section, the matrix is not in explicit form due to
the use of two energy groups.

3.1 Lambda modes equation

Reactors calculations are based on the multigroup neutron diffusion equation [Hébert1987]. If
this equation is modeled with two energy groups, then the problem to be dealt with is to find
the eigenvalues and eigenfunctions of

Lψ i =

1
λi

Mψ i , (1)

which is known as the Lambda Modes equation [Vidal1997], where

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

Σ+∇∇−Σ−

Σ+Σ+∇∇−= →→

→→

2212

1211

)(

0)(

a

a

D

DL ,

(2)

⎥
⎦

⎤
⎢
⎣

⎡ ΣΣ
=

00
21 ff νν

M and ⎥
⎦

⎤
⎢
⎣

⎡
=

i

i

t

f
i φ

φ
φ

(3)
with boundary conditions φi Γ = 0 where Γ is the reactor border.

For a numerical treatment, this equation must be discretized in space. Nodal methods are
extensively used in this case. These methods are based on approximations of the solution in
each node in terms of a suitable base of functions such as Legendre’s polynomials
[Verdú1993]. It is assumed that nuclear properties are constant in every cell. Finally, suitable
continuity conditions for fluxes and currents are enforced.

This process allows the transformation of the original system of partial differential
equations (1) into an algebraic large sparse generalized eigenvalue problem

, 1
i

i
i ML ψ

λ
ψ = (4)

where L and M are matrices of order 2N with the following block structure

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

i

i

i

i
MM

LL
L

i 2

11211

2

1

2221

11

00
10

ψ
ψ

λψ
ψ

. (5)

Depending on flux continuity conditions imposed among the discretization cells of the
nuclear reactor, the matrices L11 and L22 will be symmetric or not. Due to intrinsic properties
of the physical problem, these matrices are diagonal dominant and positive definite. On the
other hand, under certain conditions, the null block of operator L can be a diagonal matrix as
L21, M11, and M12 blocks. All matrices are sparse and very large. This problem must be solved

IADIS International Journal on Computer Science and Information Systems

 81

in modal methods of transient analysis. By eliminating ψ2 i
in (5), we obtain the following N-

dimensional standard eigenvalue problem

Sψ1i
= λiψ1i

, (6)
where the matrix S is given by

S = L11
−1(M11 + M12L22

−1L21) . (7)
One possible method for solving the standard eigenvalue problem represented in (6), is the

Arnoldi Iteration [Saad1996] (Algorithm 1) where the most expensive operation is represented
by a sparse matrix-vector operation Svj (line 3).

Algorithm 1. (Arnoldi Iteration)
1. Choose a vector v1 of norm 1

2. For j=1,2, …, m Do:
3. Compute hij=(Svj,vi)for i=1,2,…,j /* expensive matrix-vector

operation */

4. Compute wj:=Svj-∑ =
j
i 1 hijvi

5. hj+1,j= wj 2

6. If hj+1,j=0 then Stop

7. vj+1=wj/hj+1,j

8. EndDo

Nevertheless, due to the matrix S is not in explicit form, it is necessary to carry out the

steps of the Algorithm 2, which consists of three diagonal-vector operations, one sum of
vectors, and the solution of large sparse linear systems related to the matrices L11 and L22 (lines
2 and 5). These last operations are the most expensive and their fast solution might decrease
the computation time of the eigenvalue problem established in (6).

Algorithm 2. (Sv operation)
1. w1:=L21v

2. w2:=L22-1w1 /* solve a large sparse linear system */

3. w3:=M12w2

4. w4:=M11v

5. r:=L11-1(w3+w4) /* solve a large sparse linear system */

3.2 Ringhals-I reactor

The test case corresponds to the Sweden nuclear reactor of Ringhals-I [Lefvert1996]. It has
been discretized in a 3D form using a nodal collocation method as discretization technique

FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

 82

based on second order Legendre polynomials [Hébert1987] [Verdú1994]. The dimension of
the associated matrix, L in (4), is 157248 with 1811072 non-zero elements (see Figure 2).

Figure 2. Ringhals-I reactor axial plane and block Lii non-zero patern.

4. NUMERICAL RESULTS

Numerical experiments have been performed on a cluster of PCs, formed by ten PCs at the
Polytechnic University of Valencia. Each computing node has two 2 GHz Intel Xeon
processors, and each processor has 1 GB of RAM memory. The tolerance used for the
stopping criterion is ε = 1.e-10.

4.1 Solution with pARMS

We have observed that the pARMS methods based on Schur Complement techniques, with or
without enhancements, did not converge for any number of processors whereas the most
methods based on Additive Schwarz, with the exception of the method add_arms, converged
to the solution with the requested tolerance.

Table 3 shows the execution times using one, eight and ten processors. For the case of p=1
processor, the combination of add_ilu0 preconditioner with bcgstabd accelerator was the
fastest one. With this combination, the solution of the large sparse linear systems L11 and L22
converged in 28 and 21 iterations, respectively. Use of add_iluk preconditioner presented
memory problems due to fill-in effect. This problem has been solved with the use of more than
one processor. Execution times with more than one processor (p= 8, 10) have shown that both
fgmresd and add_ilu0 appear to be competitive. In addition, it has observed that add_iluk
preconditioner was the most expensive due to k level fill-in.

Table 3. Execution times (seconds) in pARMS.

 (Using p=1 processor) (Using p=8 processors) (Using p=10 processors)
Preconditioners bcgstabd dgmresd fgmresd bcgstabd dgmresd fgmresd bcgstabd dgmresd fgmresd
add_ilu0 1.77 2.07 1.95 0.47 0.55 0.47 0.44 0.51 0.39
add_ilut 2.33 2.27 2.49 0.82 0.86 0.71 0.70 0.75 0.64
add_iluk Memory

problems
Memory
problems

Memory
problems

 39.64 35.99 34.71 28.93 26.98 25.32

IADIS International Journal on Computer Science and Information Systems

 83

Table 4 shows the parallel performance achieved with p=4, 8, 10 processors and the Figure
3 shows the execution times of this experiments. We can observe that the coefficients of
speedup and efficiency are poor. However, we believe that using a different discretization
method, we can achieve better execution times.

Table 4. Speedup and efficiency with pARMS.

P Tp Sp Ep
1 1.76 1.00 100%
4 0.77 2.29 57%
8 0.47 3.79 47%

10 0.39 4.53 45%

Figure 3. Execution times with p=1,4,8,10 in pARMS.

4.2 Solution with PETSc

We have tested many Krylov subspace methods and preconditioners with the PETSc library.
Table 5 shows execution times with p=1,4,8,10 processors without preconditioning. In these
cases, the use of parallel computing is advantageous in the solution of very-large sparse linear
systems. For example, from an execution time of 2.02 seconds with p=1 processor, it
decreases to 0.33 seconds using p=10 processors. Also, we have observed that the most
competitive method is the Conjugate Gradient (CG) for any number of processors, due to the
L11 and L22 block properties. It is interesting to note that the Conjugate Residual (CR) method
is competitive as well.

Table 5. Execution times (seconds) in PETSc (without Preconditioner).

Methods p=1 p=4 p=8 p=10
CG 2.02 0.64 0.38 0.33
BICG 3.94 1.26 0.73 0.63
GMRES 4.42 1.26 0.63 0.55
BCGS 2.67 0.82 0.48 0.44
CGS 2.60 0.79 0.47 0.41
TFQMR 2.91 0.87 0.49 0.43
CR 2.23 0.69 0.42 0.36

We have combined the above methods with the Jacobi preconditioner. The execution times
are showed in the Table 6, where we can see the effect of the preconditioner on the

FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

 84

convergence rate. For example, with p=1 processor, the execution time using non-
preconditioned CG is 2.02 seconds (Table 5), whereas using a Jacobi-preconditioner CG the
execution time decreases to 1.42 seconds. In addition, it is important to note that with ten
processors (p=10), the execution time is reduced even more. This means a time reduction of
almost 83% with regard to the sequential time using the same method and preconditioner.

Table 6. Execution times (seconds) in PETSc (with Jacobi preconditioner).

Methods p=1 p=4 p=8 p=10
CG 1.42 0.45 0.26 0.24
BICG 2.71 0.86 0.50 0.44
GMRES 2.80 0.80 0.42 0.36
BCGS 1.88 0.58 0.35 0.30
CGS 1.64 0.50 0.30 0.26
TFQMR 1.84 0.54 0.31 0.28
CR 1.53 0.48 0.28 0.26

Applying a Block Jacobi preconditioner in combination with the PETSc methods, we

obtain the execution times showed in Table 7. For p=1 processor, the runtime is 1.20 seconds,
this means a reduction of 41% with regard to the non-preconditioned case. Using p=10
processors, we obtain the same benefit that in the Jacobi preconditioner case.

Table 7. Execution times (seconds) in PETSc (with Block-Jacobi preconditioner).

Methods p=1 p=4 p=8 p=10
CG 1.20 0.45 0.24 0.21
BICG 2.32 0.81 0.44 0.37
GMRES 2.75 0.64 0.30 0.28
BCGS 1.38 0.51 0.28 0.24
CGS 1.36 0.46 0.25 0.22
TFQMR 1.47 0.47 0.26 0.23
CR 1.26 0.45 0.25 0.22

Conjugate Gradient (CG) and Conjugate Residual (CR) represented the most competitive
methods mostly. The overall parallel performance is represented in Table 8 and we can see
that the results are good enough. The execution times are showed in Figure 4.

Table 8. Parallel performance obtained with PETSc.

P Tp Sp Ep
1 1.20 1.00 100%
4 0.45 2.68 67%
8 0.24 5.04 63%

10 0.21 5.68 57%

IADIS International Journal on Computer Science and Information Systems

 85

Figure 4. Execution times with p=1,4,8,10 in PETSc.

4.3 Solution with SuperLU

From the application of SuperLU to the test case, we found the parallel performance results
showed in Table 9. However, the parallel execution times (Tp) are not specified in seconds, but
in minutes. Also, we need to say that it was not possible to calculate the sequential execution
time of SuperLU applied to our test case, due to memory problems and fill-in effect. So, in
order to present the parallel performance using SuperLU, we consider the execution time with
two processors as the basic execution time and from it, we derive the others parallel
performance parameters.

Table 9. Parallel performance with SuperLU.

P Tp Sp Ep
2 9.73 1.00 100%
4 5.00 1.89 94%
6 3.67 2.65 88%
8 2.95 3.20 80%

10 2.48 3.81 76%

Figure 5. Execution times (minutes) with 2, 4, 6, 8 and 10 processors using SuperLU.

FREE DISTRIBUTION PARALLEL SPARSE SOLVERS. APPLICATION TO LAMBDA MODES
EQUATION

 86

From Table 9, we can observe that the use of the parallel SuperLU library applied to our
particular test case it is not sufficient to attain the objective of accelerate the solution process
because it is not efficient. However, aspects such as scalability, efficiency and speedup are
good using this library as we can see in Figure 5.

5. CONCLUDING REMARKS

In this work we have applied the numerical parallel libraries of PETSc, pARMS and SuperLU
to solve the sparse linear systems related to a realistic case of Nuclear Engineering,
specifically to a problem of Neutron Diffusion equation in steady-state. The numerical parallel
libraries of PETSc and pARMS implement efficient iterative methods. By other hand,
SuperLU implements a sparse LU factorization. In this work, we have used a distributed
SuperLU version named SuperLU_DIST. Also, all these libraries are free distribution solvers.

Numerical experiments have shown that the PETSc implementation codes have been the
most efficient ones for the test case. On the other hand, pARMS implementation codes are not
so fast, but we think that using a different discretization method we can attain a better
performance.

When we use a sparse direct solver such as SuperLU to solve the sparse linear systems we
found that it does not accelerate the solution process. For that reason, the use of SuperLU is
not appropriate for our test case. However, all libraries have shown a good accuracy.

Mostly, the fastest method has been the Conjugate Gradient method (CG), combined with
a Block Jacobi preconditioner in PETSc, due to the properties of L11 and L22 matrices.

In the application of pARMS methods to the test case, we have found that the fastest
method has been the Additive Schwarz method combined with an ILU0 preconditioner type,
but overall performance has been poor.

The use of preconditioners combined with iterative methods has helped to accelerate the
rate of convergence in the solution of the sparse linear systems of the test case. Parallel
performance of PETSc codes will allow decreasing the computing time of the global process
of finding the eigenvalues and eigenfunctions of the Lambda Modes Equation in large-scale
simulations.

For this particular test case, iterative methods have showed to be supreme with regard to a
direct sparse solver such as SuperLU.

Future works will contemplate experiments with the implementation of others types of
methods and preconditioners such as second order methods and inverse preconditioners.

ACKNOWLEDGEMENT

This work has been supported by Spanish MCYT under Grant ENE2005-09219-C02-02/CON
and by DGIT-SUPERA-ANUIES (Mexico).

IADIS International Journal on Computer Science and Information Systems

 87

REFERENCES

[Demmel2003] Demmel, J.W. et al., 2003, SuperLU_DIST: A Scalable Distributed-Memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Trans. Mathematical Software, Vol. 29, No.
2, pp. 110-140.

[Duff1986] Duff I.S. et al., 1986, Direct Methods for Sparse Matrices , Clarendon Press, Oxford.
[Groupp1994] Groupp W. et al., 1994, Using MPI: Portable Parallel Programming with Message

Passing Interface, MIT Press.
[Hébert1987] Hébert A., 1987, Development of the Nodal Collocation Method for Solving the Neutron

Diffusion Equation, Ann. Nucl. Energy, Vol. 14, No. 10, pp. 527-541
[Kumar1994] Kumar V. et al., 1994. Introduction to parallel computing. The Benjamin/Cummings

Publishing Company, Inc., Redwood city California.
[Lefvert1996] Lefvert T., 1996. RINGHALS I Stability Benchmark – Final Report, NEA/NSC/DOC (96)

22, OECD Nuclear Energy Agency, Paris, France.
[Li2003] Li Z. et al., 2003. pARMS: A parallel version of the algebraic recursive multilevel solver,

Numerical Linear Algebra with Applications, Vol. 10, pp. 485-509.
[Saad1996] Saad Y., 1996. Iterative Methods for Sparse Linear Systems, PWS Publishing Company,

Boston, MA.
[Saad2003] Saad Y. et al., 2003. pARMS: A Package for the Parallel Iterative Solution of General Large

Sparse Linear Systems: User's Guide, Technical Report, Minnesota Supercomputer Institute,
University of Minnesota.

[Satish2001] Satish B. et al., 2001. PETSc Users Manual, Technical Report ANL-95/11 - Revision 2.1.0,
Argonne National Laboratory.

[Verdú1993] Verdú G. et al., 1993, Lambda Modes of the Neutron-Diffusion Equation. Application to
BWRs Out-of-Phase Instabilities, Ann. Nucl. Energy, Vol. 20, No. 7, pp. 477-501.

[Verdú1994] Verdú G. et al., 1994, 3D λ-Modes of the Neutron Diffusion Equation, Ann. Nucl. Energy,
Vol. 21, pp. 405-421.

[Vidal1997] Vidal G., 1997. Métodos Numéricos para la Obtención de los Modos Lambda de un Reactor
Nuclear. Técnicas de Aceleración y Paralelización. PhD. Thesis, Universidad Politécnica de
Valencia, Valencia, Spain.

