
IADIS International Journal on Computer Science and Information Systems
Vol. 1, No. 2, pp. 1-14
ISSN: 1646-3692

 1

THE DISTRIBUTED LOCATION RESOLUTION
PROBLEM AND ITS EFFICIENT SOLUTION

Jörg Roth University of Applied Sciences Nuremberg, 90489 Nuremberg, Germany

ABSTRACT

Location-based applications and services become increasingly important for mobile users. They take into
account a mobile user's current location and provide a location-dependent output. To support developers
of location-based services, the Nimbus framework hides specific details of positioning systems and
provides uniform output containing physical as well as symbolic location information, which often are
more suitable for applications and users. One basic problem is the Distributed Location Resolution
Problem: given a location; which identifiable areas cover this location, if area information is distributed
among different servers? This paper presents an algorithm that solves this problem and runs in the dis-
tributed, self-organizing Nimbus infrastructure.

KEYWORDS

Location-based service, symbolic location, self-organizing infrastructure

1. INTRODUCTION

The answer to the question "Where am I?" becomes increasingly important for mobile users.
In the future, it will not only be sufficient to know the coordinates of the current location, but
also to know information about the current location. Typical questions will be: "Which bus
takes me from here to the railway station?" or "Who of my friends are currently in this
restaurant?". Over the last years, many researchers developed so-called location-aware
applications that respond to such questions. For such services, experts expect a huge market
potential of several billion dollars in revenue worldwide in the next years [6, 16].

Location-based services often need symbolic location information, but most positioning
systems only provide physical locations. In this paper we present the Nimbus platform, which
provides a solution for the distributed location resolution problem (DLRP): given a location
and a set of distributed computers, each storing a certain set of identifiable areas; which areas
contain this location? Nimbus introduces a naming scheme and classifies these areas according
to hierarchies. If an application gets well-defined area names for a certain location, it can
easily lookup location-based information in e.g. databases or file systems. Providing these

IADIS International Journal on Computer Science and Information Systems

 2

location information, the framework enables applications in the area of mobile and pervasive
computing which otherwise were not conceivable or at least very cost-intensive. The
following examples motivate the benefits of this approach.

A universal location-based remote control is illustrated in fig. 1 (left). It offers different
services depending on the user's current location: at home, it is a traditional remote control for
home-entertainment equipment. At work, it is used as an electronic key to open office doors
and on travel, it can be used to pay tickets for public transportation. Such a device is not
primarily interested in the physical location but, in the type of the current position (e.g. home
or office). Fig. 1 (right) presents a location-based bus planner, developed with the Nimbus
framework. The user simply selects the destination and the application computes the
appropriate timetable for the selected destination, while taking into account the current time
and location. After boarding the bus, the planner supervises the current location and informs
the user when to exit. Again, this application is not primarily interested in the physical
coordinates of the user’s current location, but wants to know at which bus station the user is
waiting. As the bus station locations are stored decentrally (e.g. inside different bus station
registers for the respective city), we have to look up these data in a distributed manner.

Figure 1. Location-based applications: the universal remote control (left), the Nimbus bus planner (right)

Areas such as bus stations and offices, but also streets, forests, city centres etc. are often called
symbolic or semantic locations [8, 10, 14]. People expect a lot of semantics and intelligence
behind these words, even though the term semantic location in its original meaning only
describes an area that has a certain identity for a user or application. Thus, in Nimbus we use
the term identifiable area instead [13]. Such an area can uniquely be identified by a name. The
naming scheme provides a rough classification of the area, but the actual semantics behind it is
only perceptible inside the respective application. In principle, one huge database on a single
server could store all identifiable areas, but a single database would be a bottleneck. More rea-
sonably, a mobile client has local access to the service. Moreover, information about local
areas is usually available locally and is difficult to administrate in a central database. As a
solution, Nimbus provides a distributed system of Location Servers that store the information

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 3

about identifiable areas in a decentralized manner. Location servers are connected to each
other in a peer-to-peer style and provide a solution of the DLRP.

2. RELATED WORK

Several frameworks deal with location data and provide a platform for location-based
application. E.g., the Open Geospatial Consortium [9] provides a high-level framework to
build location-based services. The LORE platform [2] contains three key components: a
location server providing a location sensing API, a moving object database and a spatial
publish/subscription engine. All components are built according to a traditional client/server
architecture. Nexus [5] introduces so-called augmented areas to formalize location infor-
mation. Augmented areas represent spatially limited areas, which may contain real as well as
virtual objects, where the latter can only be modified through the Nexus system. Inside the
Nexus framework, different locations can be modeled in the so-called augmented world
model: static objects like houses or streets, mobile objects such as users or cars and virtual
objects such as virtual post-its or virtual kiosks. Between these locations, relations can be
defined which express, e.g., inclusion of areas. The RAUM location model [1] was designed to
address the needs of networked ubiquitous devices such as intelligent cups and memo clips. In
its first version it could only store locations without any geographic information. In a second
version, geometric information was added in order to express positions of objects.

A number of platforms focus on location sensing. The Location Stack [4] provides a
layered approach to access multiple positioning systems. A similar approach follows the POS
component inside the PoLoS project [11]. Specific positioning systems are modeled using
wrappers. Even though platforms such as Location Stack and PoLoS simplify the process of
location sensing, they do not consider the distributed nature of information about locations
and focus on the location sensing and fusion function.

Geographic information systems (GIS) and spatial databases provide powerful mechanisms
to store and retrieve location data [15]. They concentrate on accessing large amounts of spatial
data. In our scenarios, however, we have to address issues such as connectivity across a
network and mobility of clients, thus we have to use data distribution concepts, which are only
rarely incorporated into existing GIS approaches.

Even though some of the platforms above provide services to discover identifiable areas,
they do not solve the DLRP in its general meaning. E.g. in Nexus, a requesting client has to
discover the appropriate server for the specific area via a central register. Requests concerning
multiple servers have to be carried out one after the other. LORE is built according to a fully
centralized client/server architecture and does not support any distributed storage of location
information. In the following, we describe a fully distributed infrastructure that efficiently
solves the DLRP without any central instance.

3. NIMBUS

The Nimbus framework supports developers of location-aware applications. The primary goal
is to provide the most enriched location information including identifiable areas. Once the en-
riched location information is delivered to the application, the mobile client can use arbitrary

IADIS International Journal on Computer Science and Information Systems

 4

mechanisms to execute the location-based service. Established mechanisms such as databases,
component services, web services or simple socket connections can be used to get further in-
formation about the location (fig. 2).

Figura 2. Data flow in the Nimbus framework

The Nimbus framework has a mobile part installed on the mobile system and a network part
providing information about the location. The mobile part takes raw positions and requests the
network part to provide an augmentation: it maps any local coordinates to WGS84 coordinates
[3] and generates identifiable area information, which now can easily be processed by the
application. Using a predefined name scheme, identifiable areas can be directly used for
database queries or as parts of file names. Physical locations are still useful for all kinds of
geometric queries, e.g. asking for distances between locations or asking for directions. Nimbus
provides additional services related to location-based services (e.g. geocasting) not presented
in this paper.

3.1 The Nimbus Location Model

We want to describe the concept of identifiable areas in Nimbus more precisely. Let P denote
the set of all physical locations inside the observed area (e.g. all WGS 84 coordinates from a
certain depth up to a certain altitude in the atmosphere). We call an area S ⊆ P with a certain
meaning an identifiable area of P. To identify areas not only by their geometry, they have a
name. An area with its corresponding name is called a domain. For a domain d, d.name
denotes the domain name, d.c the domain geometry. Further D denotes the set of all domains.

Names of identifiable areas could in principle be human-understandable, but there is no
single human-understandable representation which is suitable for all conceivable applications.
Thus, the area names are optimized for the internal Nimbus operations. Once the name space
is clearly defined, transforming a name to its final representation often means simply looking
up a string inside a table.

Looking at real-world scenarios space is often structured hierarchically, e.g. a room is in-
side a building, a building is in a city and a city is in a country. Thus, we divide the space into
hierarchies. A hierarchy contains domains with a similar meaning, e.g. domains of cities or
geographical domains. Each hierarchy has a root domain and a number of subdomains; each

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 5

of them can in turn be divided into subdomains. A top node of a subhierarchy is called a
master of the corresponding subdomains. A link between a subdomain and its master is called
a relation; master and subdomain are called related, denoted master subdomain. Names of
subdomains are built similar to Internet host names, i.e. <sub>.<master>. Fig. 3 presents
example hierarchies.

Figure 3. Hierarchies in the Nimbus framework

 The Distributed Location Resolution Problem

As our initial goal, we want to solve the distributed location resolution problem (DLRP):

Given a location p and a set of distributed computers, each storing a certain
set of identifiable areas di.c. Which areas (identified by their name di.name)

contain p?

In fig. 3 point p resides in the domains A, y.A, x.B and B. Since a master always fully
encloses a subdomain, the results A and B do not carry additional information. A sufficient
answer to the question above is "y.A and x.B". Browsing through all hierarchies from the
root down to the smallest domains containing p would cause a large number of requests and
network traffic in distributed infrastructures. Therefore, a second relationship between
domains is introduced, the association. Two domains d1, d2 are associated, denoted d1 ~ d2, if
they are not related and their shared area is not fully covered by their respective subdomains.
We introduce the abbreviation

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=∆

∈
U

>edDe
cecdd

,
.\ .)((1)

for the domain's area excluding the subdomains' area and get the definition

d1 ~ d2 : ⇔ (d1) ∩ (d2) ≠ {}. (2)

In fig. 3 the area shared by A and x.B is fully covered by the domain y.A, thus A and x.B
are not associated since this link would not provide additional information. Starting at x.B,
only y.A has to be checked. With the help of associations, we now sketch a solution for the
DLRP:

IADIS International Journal on Computer Science and Information Systems

 6

DLRP(p) → set of names
 look up an arbitrary domain d0 with p ∈ (d0)
 names ← {d0.name}
 for all d ~ d0 do
 if p ∈ (d)
 names ← names ∪ {d.name}

If an arbitrary domain d0 is available that fulfils the first condition, the algorithm can
efficiently loop through the associated domains. Note that the algorithm assumes that at every
conceivable location, at least one domain d0 is available that covers this location. This is
usually true for real scenarios. We conducted a formal proof of correctness of this algorithm
[12].

3.3 Looking up Location Servers

The question is how to find a domain d0. To answer this question we now have to switch from
the model view to the infrastructural view of Nimbus in which the domains are stored on
location servers. Each location server can store a certain amount of domains, called a cluster.
Each location server is responsible for a specific domain and all subdomains, for which no
other location server is set up. Associations, relations and areas can be defined for clusters
and thus for servers in a canonical manner: two clusters are related, if there exist domains of
each cluster that are related. An analogous definition can be made for associations. A area
is the cluster area without the subservers' cluster areas. The relation between clusters forms the
so-called cluster tree. Fig. 4 shows the infrastructure based on the storage of clusters. This
example uses more realistic hierarchies imported from land survey offices (see section 4).

Figure 4. The distributed Nimbus infrastructure

One could argue that the communication to run the algorithm above is not acceptable.
Fortunately, the infrastructure can proactively collect a lot of information to avoid heavy
network traffic at resolution time: a location server that starts up, automatically discovers the

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 7

master server and all associated servers and performs a registration in order to exchange the
areas. As a result, all information required by the algorithm above is stored locally on each
server, also by the server that contains d0. A client has only to discover that server, which then
can execute the algorithm's main loop. In addition, a client can cache previous results to
improve the execution time even more.

As mobile users are distributed among different location servers, this infrastructure is
highly scalable. The approach does not overload top-level location servers. One can add a
server and restructure the respective hierarchy, thus it is possible to add server power to the
infrastructure in a simple way.

When a mobile node moves to a specific location, it automatically looks up an appropriate
location server for the new location, called the Local Location Server (LLS). The LLS is the
representative of the infrastructure for a mobile node. In particular, the LLS stores the domain
d0 of the DLRP algorithm. Usually, the LLS can fully answer the queries without any further
network transactions. Inside the covered area, a user can move around without looking up a
new location server. Only when a mobile user leaves a certain area, a new LLS has to be
looked up. The lookup uses the following mechanisms:
• a mobile client receives information about the LLS from the positioning system,
• a mobile client performs a search using broadcasting lookups (using e.g., MBone or UDP

broadcast), or
• a mobile client asks another location server (e.g. an old LLS) which replies a redirect

message for a more suitable server.

The first mechanism is most effective, but requires adapting the positioning systems. Nimbus
usually uses a combination of the latter two mechanisms. The client performs a lookup
procedure as illustrated in fig. 5.

Figure 5. The lookup mechanism

IADIS International Journal on Computer Science and Information Systems

 8

The corresponding algorithm can be sketches as follows:

LLS_lookup → LLS
 askedservers ← {}; redirect ← set of former LLSs
 if redirect = {}
 send a broadcast message // (1) in fig 5.
 collect broadcast replies → redirect // (2) in fig 5.
 while not LLS found // i.e. no success message received
 return error, if no server in redirect\askedservers is available
 send a redirect request to the geometrically nearest server of

redirect\askedservers
 add this server to askedservers, remove from redirect
 add redirect reply to redirect // (3) in fig 5.

This algorithm indirectly performs a backtracking, if a sequence of redirects gets caught in a
dead end. In contrast to the resolution algorithm in section 3.2 which mainly uses the logical
links between domains, the lookup mechanism is mainly based on their geometry. Logical
links are only used to generate answers to clients: a server which receives a broadcast or a
redirect request answers according to the following rules:
• If it is the LLS or knows the LLS as its master, subserver or associated server, it replies a

success message.
• If one of its master, subserver or associated server is geometrically nearer to the client, it

replies the nearest one in a redirect message.
• Otherwise no reply is performed.

It is important to note that a broadcast only is required during the first startup. Once
connected, a client can lookup an LLS with the help of a redirect request to any other server.
For this, clients cache addresses of former LLSs.

3.4 Avoiding Reply Storms

A lookup via broadcast may reach many servers. If every server answers, the resulting so-
called reply storm could overload a mobile client or its wireless connection. To reduce the
overall network traffic, a server replies a redirect with a certain probability qredirect. For this
purpose, each server that receives a lookup, generates a random number rand ∈ [0, 1) and
only if rand < qredirect a redirect message is replied.

We can use different functions that model qredirect. To be useful, qredirect should fulfill certain
properties. First, small distances should produce higher values than big ones in order to get
more local answers. Second, the probability should be zero beyond a certain distance;
otherwise even far away servers would sometimes be forced to reply. Third, the overall be-
havior should easily be controlled with the help of some variables. We examined two
functions as sketched in fig. 6.

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 9

Figure 6. Possible functions for qredirect

The first function for qredirect (fig. 6 left) is computed according to the formula

⎪
⎪

⎩

⎪
⎪

⎨

⎧
≤+

=

otherwise0

 if

1
)(0

0

max

redirect

rr
r
r
q

rq (3)

where r is the distance of the domain’s border to the given location; q0 ∈ (0, 1] is the
maximum value of qredirect; r0 ≥ 0 is the distance that leads to qredirect = q0/2 and rmax ≥ r0 is the
maximum distance to get qredirect > 0.

Even though this function is simple to compute, the term +1 in the denominator leads to an
undesirable behavior concerning the distribution of replies: as we do not have a uniform
distribution among the distances, the number of replies is difficult to control. As a result we
decided to use a second function (fig. 6 right), according to the formula

⎪
⎩

⎪
⎨

⎧

≤≥

<

=

otherwise0

 and if/

 if

)(000

00

maxredirect rrrrrrq

rrq

rq (4)

where r again is the distance of the domain’s border to the given location; q0 ∈ (0, 1] is the
maximum value of qredirect; r0 ≥ 0 is the maximum distance that leads to qredirect = q0 and rmax ≥
r0 is the maximum distance to get qredirect > 0. For further considerations, we assume that rmax is
significantly greater than r0. A reasonable assignment is, e.g., q0 = 0.8, r0 = 100 m and rmax =
1.5 km. In the following, we use the formula (4) for qredirect.

The function qredirect affects two quantities: the average number of broadcast replies and the
average distance of the nearest replier. The client is interested in getting a sufficient number of
replies without being overloaded. In addition, the minimum distance of all replies should be as
near as possible. We want to explore some characteristics of qredirect which help to control its
behavior.

IADIS International Journal on Computer Science and Information Systems

 10

The average number of areas completely inside or cut by a circle with radius r can be
approximated by

ovrovrapprox nrnrrn ⋅
∆

+⋅
∆

= ππ 2)(
2

 (5)

where is the average size of all areas and novr the average number of overlapping
areas at a point in space. Then the expected number of broadcast replies according to our
mechanism is

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

∆
+⎟

⎠

⎞
⎜
⎝

⎛ −
∆

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆

⋅
+

∆
⋅

= ∫)ln(11
2

12
22

)(
0

0
00

0 r
rr

rrnqqdr
n

r
n

rqqn max
maxovrbr

r
ovrovr

redirectbrreply

max

π
ππ

(6)

where qbr is the probability to reach a server with a broadcast message. Note that we assume a
uniform distribution of hosts receiving a broadcast. In reality, it depends on network-related
properties not modeled by this analytical approach. We further can approximate the average
distance of repliers by

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∆+⎟

⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −∆+⎟

⎠
⎞

⎜
⎝
⎛ −

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆

⋅
+

∆
⋅

= ∫
)ln(1

2
1

)
2
1

6
1

2
1

22)(
)(

1

0
0

0
2

0
2

0

2

r
rrr

rrrr
drrnrnrq

rn
r

max
max

maxmaxr
ovrovr

redirect
approx

replyavg

max ππ
(7)

which does not depend on qbr. As the client uses the nearest answer for redirection, it is
interested in the expected nearest distance rreplymin of all nreply replies. For arbitrary
distributions, it is difficult or impossible to get a closed formula for this distance. In our case,
however, we approximately have a uniform distribution of distances, which is one great
benefit of our specific qredirect, not proved in this paper. If further rmax is significantly greater
than r0, we thus can approximate rreplymin by

000000 2/1)))/ln(1()2/((21 rnqqrrrrrnqq
r

n
r

r
ovrbrmaxmaxovrbr

max

reply

max
replymin ππ

∆
≈

∆++∆+−⋅

⋅∆
=

+
≈ (8)

This approximation is surprisingly useful in reality as shown in our evaluations. At this point
we can summarize two benefits of qredirect. First, the client can easily control the average
number of replies by rmax, which can be increased during runtime, if too few replies arrive on
average. For greater rmax, we nearly get a linear dependency of rmax and nreply. Second, the
expected distance of the nearest reply remains constant (and low) for increasing rmax. As the
number of redirect requests mainly depends on rreplymin, we thus get a low traffic for redirects.

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 11

3.5 Computing a Configuration

A further goal is to compute a concrete configuration for given target values of nreply and
rreplymin. As we have to determine three variables q0, r0 and rmax, but only two given values, we
have to put two of the three variables into relation. A reasonable assumption is that r0 =
rmax/15, where the factor 15 is based on the evaluations shown below.

As a consequence

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆
+

∆
⋅=

71.35.142 0
00

rrnqqn ovrbrreply π (9)

and

∆+=
∆

⋅⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∆
+

∆
⋅≈⋅ 71.35.14

2
71.35.142 0

00

0
00 r

rnqq
rrnqqrn

ovrbr
ovrbrreplyminreply π

π (10)

We thus get a configuration r0conf, rmaxconf and q0conf that leads to target values of nreply and
rreplymin as follows:

5.14/)71.3(0 ∆−⋅= replyminreplyconf rnr

confmaxconf rr 015 ⋅=

confovrbrreplymin
conf rnqr

q
0

0 2π
∆

=

(10)

Not all values of nreply and rreplymin lead to reasonable configurations, as at least two restrictions
have to be considered: r0conf has to be greater than zero and q0conf must not be greater than one.
This leads to two inequations:

∆>⋅ 71.3replyminreply rn

∆≥confovrbrreplymin rnqr 02π
(11)

Thus, a configuration can not fulfill any unrealistic setting such as nreply = 1, rreplymin = 0 m as
such values would produce invalid values of q0conf and r0conf.

As an example (based on the settings presented in the next chapter), we want to compute a
configuration for nreply = 10 and rreplymin = 250 m. These values fulfill the inequations (11), thus
lead to a reasonable configuration. With the help of formulas (10) we get r0conf = 144.6 m,
rmaxconf = 2169.0 m and q0conf = 0.854.

IADIS International Journal on Computer Science and Information Systems

 12

4. EVALUATIONS

The efficiency of the Nimbus mechanisms is evaluated with the help of several simulations
which use real imported data from the German land survey office. In Germany, the ATKIS
database provides geospatial data for governmental purposes [7]. For the Nimbus project, data
covering an area of 84 km2 in the area of Hagen was purchased. It contains approx. 80000 raw
database records which were converted to approx. 8000 Nimbus domains, divided into three
hierarchies: a hierarchy containing the city, parts of the city properties, sites and buildings, a
hierarchy containing those domains with a geographical meaning, currently rivers and lakes,
and a hierarchy containing roads and railways.

The location server application consists of approx. 4000 lines of Java code (basic libraries
excluded). On a 2.8 GHz (Windows XP) computer, the location server storing approx. 1000
domains generates a response to a single resolution request in 9.7 ms on average (only
counting the CPU time, not considering the network link). The first measurements thus
consider several clients simultaneously requesting resolutions over the network. All caches
were switched off. Once receiving a resolution result, the next request is sent without any
delay. This causes a high load to the servers.

The servers were connected via a 100 MBit/s Ethernet switched network. The delay for
wireless phone connections would be higher, but with higher delays the measured effects are
diluted and the measurement result would be less expressive. In addition, it is more difficult to
impose load on location servers using slow connections. Location servers are Windows XP
computers with a CPU speed between 1.8 and 2.8 GHz.

The experiments are conducted for 1, 2 and 3 servers (fig. 7, top left). Using more than one
location server, the load of different users is distributed. As expected, the approach is scalable:
the more location servers are used, the more flat is the curve. Whenever in reality a location
server is overloaded, new subservers can easily be introduced. It is important to note that in
reality a much higher number of users per location server is needed to cause a specific load as
clients use a cache and clients usually do not permanently perform resolution requests. As an
example, we assume that an application needs one location request per second and, as a result
of using a cache, only one of five resolution requests are carried out over the network. Instead
of 100 users, we then get a total of 1000 users that impose the same load to a single location
server.

THE DISTRIBUTED LOCATION RESOLUTION PROBLEM AND ITS EFFICIENT SOLUTION

 13

Figure 7. Evaluations of Nimbus characteristics

The next measurements present the effectiveness of the lookup mechanisms. As a worst case
scenario we assume a separate server per domain. The imported data is characterized by =
11817 m2 and novr = 1.218. We further assume that only 5% of servers nearer than rmax answer
the broadcast, i.e. qbr = 0.05. The function qredirect is configured by r0 = 100 m and q0 = 0.8;
rmax is variable. Fig. 7 (bottom left) presents the distance of replying servers. From the network
view, two further numbers are important: replies per broadcast (fig. 7, top right) and the
redirects to find the LLS (fig. 7, bottom right). The charts present numbers rather than network
times as they are more meaningful.

As a first observation, the analysis presented in section 3.4 is very accurate even though
the real data has large variations in, e.g., the size of areas. Second, the lookup algorithm
effectively avoids reply storms and on the other hand allows a client to control the number of
broadcast replies in a fine-grained manner with the help of rmax. Third, even though the
number of replies increases, the number of redirects to reach the LLS remains constant and
low – for our measurements, less than five redirects were required on average.

5. CONCLUSION AND FUTURE WORK

The main goal of Nimbus is to offer enriched location information that is easy to process.
Nimbus provides globally unique physical locations, independently of the underlying
positioning systems and identifiable areas according to a predefined name space. Nimbus
reached this goal with the following instruments: a location model which supports efficient

IADIS International Journal on Computer Science and Information Systems

 14

access to decentralized stored area data and a distributed, self-organizing infrastructure, easily
to be administrated, designed according to scalability issues. Performance evaluations show
the efficiency and scalability of the approach.

Even though Nimbus reached a high level of completeness, there are some open issues. In
the current implementation, Nimbus stores domains with a public character. Every user can
access all domains as, e.g., rivers or cities have a certain meaning for the public. Some
domains however should not be open for everyone, e.g. barracks in a military area. We are
currently working on appropriate access control mechanisms.

A second issue results in mobile domains: trains or ships, e.g., permanently change their
location. In principle, Nimbus supports such domains, but such domains cause a high amount
of updates messages. We currently work on a mechanism which avoids huge traffic and at the
same time ensures consistency.

REFERENCES

1. Beigl, M.; Zimmer, T.; Decker, C.: A Location Model for Communicating and Processing of
Context, Personal and Ubiquitous Computing, Vol. 6, No. 5-6, Dec. 2002, Springer-Verlag, 341-357

2. Chen, Y.; Chen, X. Y.; Rao, F. Y.; Yu, X. L.; Li, Y.; Liu, D.: LORE: An infrastructure to support
location-aware services, IBM Journal of Research & Development, Vol. 48, No 5/6, Sept. 2004, 601-
615

3. EUROCONTROL European Organization for the Safety of Air Navigation: WGS 84 -
Implementation Manual, Brussels, Belgium, Febr. 1998

4. Hightower, J.; Brumitt, B.; Borriello, G.: The location stack: A layered model for location in
ubiquitous computing, Proc. of the 4th IEEE Workshop on mobile Computing Systems &
Applications (WMCSA 2002), Callicoon, NY, USA, June 2002. IEEE Computer Society Press, 22-28

5. Hohl, F; Kubach, U.; Leonhardi, A.; Schwehm, M.; Rothermel, K.: Nexus - an open global
infrastructure for spatial-aware applications, Proc. of the 5th Intern. Conference on Mobile
Computing and Networking (MobiCom '99), Seattle, WA, USA, 1999. ACM Press

6. Kelsey Group: Advertising and E-commerce, http://www.kelseygroup.com/, 2001
7. Land Survey Office North Rhine-Westphalia, http://www.lverma.nrw.de
8. Leonhardt, U.: Supporting Location-Awareness in Open Distributed Systems, PhD Thesis, Univ. of

London, 1998
9. Open Geospatial Consortium, OGC Home Page, http://www.opengeospatial.org/
10. Pradhan, S.: Semantic Location, Personal Technologies, Vol. 4, No. 4, 2000, 213-216
11. Prigouris, N.; Papazafeiropoulos G.; Marias, I.; Hadjiefthymiades S.; Merakos, L.: Building a

Generic Broker for Location Retrieval, Proc. of the IST Mobile & Wireless Communications Summit,
Portugal, June 2003

12. Roth, J.: A Decentralized Location Service Providing Semantic Locations, Informatics Report 323,
University of Hagen, Jan. 2005

13. Roth, J.: Detecting Identifiable Areas in Mobile Environments, Proc. of the 21st Annual ACM
Symposium on Applied Computing, April 23-27, 2006, Dijon, (France), ACM Press, 986-991

14. Schilit, B.; Adams, N.; Want, R.: Context-Aware Computing Applications, Workshop on Mobile
Computing Systems and Applications, Santa Cruz, CA, USA, 1994

15. Tomlin, C., D.: Geographic Information Systems and Cartrographic Modeling, Prentice Hall, 1990
16. UMTS Forum: Enabling UMTS/Third Generation Services and Applications, Report 11, Oct. 2000,

http://www.umts-forum.org

