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ABSTRACT 

Extensible Markup Language (XML) is a language for storing and exchanging structured and semi-
structured data in a flexible format. As previous sources support public XML export, increasing amounts 
of public and private data are described in XML. Due to the flexible characteristics of XML it is today 
employed for the representation of data in virtually all areas of computing, and particularly in web-based 
applications. One of the most important tasks in XML document processing is querying and navigating, 
that is the extraction of parts of a document that match a structural condition and are in a specific 
context. However, due to the nature of current file storage and the tree-like view of XML documents, 
XML file accessing is in a sequential manner and the navigation is often costly. Great challenges arise 
from the demands of integrating and manipulating XML data from different sources. In this paper, we 
address the fundamental issues and develop a comprehensive solution with regard to the enhancement of 
XML structural query execution. We present this enhancing process in detail, and further provide the 
operation examples to demonstrate how they would work. We also conduct a series of experiments based 
on our proposed approach and report our findings. 
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1. INTRODUCTION 

With the rapid development of Internet technology large volumes of data in the form of 
electronic documents have been created. This includes, in particular, semi-structured textual 
information such as electronic documents, programs, log files, online text, transaction records, 
patent information, literature citations, business profiles, and emails. The characteristic of this 
data varies greatly in structure. XML provides the necessary flexibility desired for handling 
data with such varying structures. As XML is becoming the principal medium for data 
exchange over the Web and for information integration in general, ever increasing amounts of 
public and private data are described in XML. XML data is usually defined in a tree or graph 
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based, self-describing object instance model (Deutsch et al., 1999). It is also known as an 
easy-to-write and easy-to-parse language which offers a better way to exchange data between 
varieties of applications on the Internet (Bourret, 2004). The extensible nature of XML 
provides flexibility in describing the variable structure of data. However, semi-structured data 
is incompatible with the flat structure of relational database tables, and therefore the growth of 
XML data requires new and complex storage and manipulation techniques.  

Data analysis in the relational world is relatively complicated since the data is derived 
from business processes or human activities. However, for the purposes of data integration and 
data exchange, the data originates mostly from the existing electronic data. By considering the 
characteristics of data sources, the data which is available electronically can be divided into 
two broad categories. The first, data centric, is mainly for machine consumption, such as the 
data in relational databases. The second, document centric, is for human consumption, such as 
the data located in a file system. Moreover, from the enterprise perspective, a variety of 
information management systems have been widely adopted in daily business activities. 
However, each of the systems has its own data structure and access methods which results in 
data heterogeneity. In addition, enormous volumes of electronic data are located on the Web, 
which can be seen as a world wide file system. Anyone with access to the Internet can use this 
storage system to publish and access electronic documents. It is a similar situation with 
Intranet and Extranet platforms for business applications. 

One possible solution for facilitating the task of manipulating the data form heterogeneous 
sources as mentioned above is to utilize XML as a medium to bridge the server and the client. 
Consequently, one common interface is used to access the data from different sources. It 
breaks down the barriers between different computing platforms, development environments 
and communications networks, allowing organizations to work together electronically without 
the expense and delay of agreeing on semantics, schema, interfaces, and other application 
integration. We use J2EE XML Web Services framework to demonstrate this idea (Sun 
Microsystems, 2003). XML data is the principal medium in this architecture. We propose a 
more effective and efficient manipulating technique in the Service based fashion in order to 
fill in the gap between user requests and data sources. The position of our work and the 
complete architecture can be found in Figure 1. 

 
Figure 1. XML Web Services Architecture 
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The navigation of tree-natured XML data is proven to be costly. Evaluation of the regular 
path expressions involves the exploration of the descendant of a given set of nodes. Too many 
nodes have to be visited unnecessarily due to the blindness of a subtree (descendant) to a node 
(Sangwon Park & Hyoung-Joo Kim, 2002). Accessing through tree structure requires 
recursive computation, for a complex query it is most likely to incur redundant tree travelling 
which could greatly downgrade overall query execution performance. Accordingly, 
accessibility plays an important role for handling node-to-node relationships in XML related 
framework. Moreover, the textual aspect of XML data is as important as the structural parts. A 
full text search in tree structure, such as DOM, is very difficult, since the textual data of the 
XML document is embedded in the tree nodes. Further, querying among large volumes of 
XML documents is quite often the case in a document-centric situation. Although XML 
related fields have been intensively studied in recent years by the database research 
community, little research has been done on path evaluation in large volume XML documents. 
In this paper, we propose two efficient approaches based on the prevention of unnecessary 
visits to, first, the documents and, second, the subtrees. By doing so, we can enhance query 
execution performance significantly. 

The rest of the paper is organized as follows. Section 2 discusses the background in XML 
and the observations that led us to the introduction of the new methods. The proposed methods 
are described in detail in Section 3. A thorough operation example is presented in Section 4. In 
Section 5, we report the findings of the experimental results. Finally, section 6 contains some 
concluding remarks and directions for future work. 

2. BACKGROUND STUDIES 

2.1 Data Model and Queries 

XML is a general markup language proposed by the World Wide Web Consortium (W3C). 
Due to its inherent flexibility, much of the data encoded in XML will be semi-structured. This 
indicates that the data may be irregular or incomplete, and that its structure is highly flexible. 
Semi-structured data is generally represented as a graph or a tree. The Document Object 
Model (DOM) is a standard interface of XML data, whose structure is a tree, which is the data 
model used in this paper (W3C, 2004). Figure 2 is an example of an XML document, and its 
DOM structure, also known as XML data graph, is represented as a tree in Figure 3. We will 
use this example XML document throughout this paper. 

Queries in XML query languages like XML-QL, Quilt, and XQuery are based on tree 
patterns for matching relevant portions of data. In this paper we focus on evaluating regular 
path expressions. The wild card operators such as “*” and “?” are allowed in path query. 
When a query is being processed, a scan operator is provided to dig out nodes which match the 
given path expression. Normally this process needs to access the entire data to fetch a node. 
Therefore, the number of nodes visited decides the query evaluating performance. The aim of 
this paper is to minimize the number of nodes fetches in order to reduce the cost of evaluating 
the queries (Daniela Florescu & Donald Kossman, 1999;Jason McHugh & Jennifer Widom, 
1999;Jayavel Shanmugasundaram et al., 2001) . 
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<?xml version="1.0" ?> 
<menu> 
    <food category="breakfast"> 
        <name>Full English Breakfast</name> 
        <price>6.95</price> 
        <description>Two eggs, bacon or sausage, toast… 
        </description> 
        <calories>970</calories> 
        <chef id="001"> 
            <first>Mick</first> 
            <family>Burton</family> 
            <email>mick@burton.com</email> 
        </chef> 
    </food> 
    <food> 
        <name>Old-Fashioned Breakfast</name> 
        <price>7.03</price> 
        <description>Eight eggs, complete pig, loaf of bread…    
        </description> 
        <calories>1150</calories> 
        <chef> 
            <first>Jack</first> 
            <middle>A.</middle> 
            <family>Smith</family> 
            <phone>123-4567</phone> 
        </chef> 
    </food> 
    <drink category="Hot"> 
       <name>Tea</name> 
        <price>2.50</price> 
        <description>A pot of Tea</description> 
        <calories>100</calories> 
    </drink> 
</menu> 

Figure 2. Example XML data 
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Figure 3. XML DOM model tree representation 
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The signature methods described in (Haifeng Jiang et al., 2002;Man-Kwan Shan & uh-Yin 
Lee, 1998;Yangjun Chen, 2002) have particularly focused on text retrieval and object-oriented 
methodology. Signature files are collections of signatures and are widely accepted due to low 
space overheads and reduced update costs (Chris Faloutsos, 1985).  

Signature, denoted by S, is a bit string of F bits, where F is the signature length. A 
signature is basically an abstraction of information which is used to indicate the presence of an 
individual in sets. A hash function is provided to encode each element of a specific set into a 
signature, which will set exactly m out of F bits to 1. The value of m is called weight of the 
element signature. The set bits are uniformly distributed in the range of [1.. F], since the hash 
function H is assumed to have ideal characteristics. Therefore, the probability of a bit position 
in an element signature being set to one is equal to m/F. Finally, the set signature is generated 
by applying the superimposed coding technique on all element signatures, i.e. all positions are 
superimposed by a bitwise OR-operation to generate the block signature. An example is 
shown in Table 1 below: 

Table 1. Example Block Signature Generated by OR-operation 

Menu 0000 0100 1000 
Food 0000 0010 0010 
Drink 0000 1000 0010 
Block Signature (SB) 0000 1110 1010 

The inclusion of a specific element can be determined by a bitwise AND-operation. If 
H”food” = H”food” ∩ SB, then there is a high possibility that “food” exists in the block. However, 
if we test H”category” = “0001 0000 1000” on the block signature, the result of H”category” ∩ SB is 
not H”category”. This indicates that there is no element “category” in that block. 

Since signatures are abstractions of the original represented information, they introduce 
information loss. False drop might happen when unqualified element passed the bitwise AND-
operation test. Although, increasing the length of signature or reducing the number of 
elements in a block can lower the probability of false drop, it also incurs a disk space 
overhead. 

In this paper, we apply the signature approach and propose new access methods in order to 
offer a better performance in retrieving XML documents. The signature of each node is 
formed by first hashing each value in the block into a bit string and then superimposing all bit 
strings generated from the block into the block signature. The concept of “block” here is 
actually the subtree of the XML DOM tree. The details will be discussed in Section 4. 

We define some notations for signature description. Let the hash value of the name of a 
node i be H(i), and the node signature be NS(i). The NS(i) is the ORing of all the hash values 
of node i’s descendant nodes. That is, the hash value is propagated to its parent node. Then we 
can estimate the existence of a certain name x in the subtree of node i by comparison of H(x) 
∩ NS(i). If H(x) = H(x) ∩ NS(i) then there may be the name x in the subtree of node i. 
Otherwise, if H(x) ≠ H(x) ∩ NS(i), then we can be assured that the name x does not exist in the 
subtree. 
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3. TWO-STEP XML FILTERING APPROACH 

In this paper we propose a two-step signature-based navigation method: the Level Signature 
(LS) and the Sequential Signature table (SST). Firstly, we assume an XML document is 
represented as a DOM tree, an example of which can be found in Figure 3, and there is hash 
function H for creating the hash value. The label path contains the names of the element or 
attribute in the DOM tree. Therefore only element and attribute nodes are involved in making 
the signature. Figure 4 depicted our approach. 

 

3.1 First Step - Level Signature (LS)  

The level signature is the OR-ed signature of the nodes that reside in the same level of the 
DOM tree. Moreover, the level signature path (LSP) is the path of level signature arranged 
according to the level of the DOM tree. 

Definition 1. (Level Signature): We assume the number of nodes in document D is n. The 
level signature of the lth level of document D is denoted by LSD (l). 

LSD (l) = OR Operation( if H(i) in level l )  where i = 0 .. n-1. 
In addition, the level signature path of an XML document D, denoted by LSPD, where the 
height of document D is h. 

LSPD = LS(1) / LS(2) / … / LS(h) 
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Figure 4. LS and SST based on the example data 
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3.2 Second Step - Sequential Signature Table (SST) 

The sequential signature table (SST) includes three fields, level (l), index (i) and node 
signature (NS), respectively. To begin with, level (l) represents the level of a node in the XML 
DOM model, which can be easily derived from the path expression of a node. For example, 
the path expression of the “food” element is “#/menu#/food”, so we know it is located in level 
3 (root in level 1). Furthermore, the order of sequential signature table is basically obtained 
from depth first traversal of the DOM tree, and corresponds to index i, where i = (0 … n-1) in 
a DOM tree with n nodes in total. For a better understanding of the order, reader can refer to 
Figure 4.  

ure)NodeSignatIndex,SST(Level,  
Definition 2. (Node Signature): The node signature of ith node of document D, denoted by 
NSD (i) and i represents the index of node. The hash value of ith node is denoted by H(i). We 
assume the number of descendant of ith node is m. (Here we use “U” to denote the bitwise OR 
operator.) 

m)(i H U  U 2)(i H U 1)(i H  (i) NSD +…++=  
As mentioned earlier in this section, the index in SST represents not only the order, but also 
provides a direct mapping of each node in the DOM tree and follows depth first traversal. In 
building the SST tables, the idea of using index plays an important role in keeping tree 
structure and node signatures in line. From definition 2, the node signature (NS) is derived 
from ORing all the hash values of the nodes in the subtree (all descendants). The SST is in a 
sequential form of tree structure, and it is also a depth first traversal. Because of that there is 
an interesting feature in the SST table, which physically clustered the subtree together on a 
sequential basis. This property offers an efficient way to skip an unqualified subtree. We then 
show this concept in Definition 3 below.  

Definition 3. (Subtree of a node): The ith node in SST denoted as node(i), and subtree of ith 
node as ST(i). We assume the number of descendant of node(i) is m. 

ST(i) = node(i + 1), node(i+2), …, node(i + m) 

Since the subtree is serial, the start position of a subtree will be the next node of node(i) which 
is node(i+1) shown in the above equation. Then we need to know the position at which that 
subtree ends. Level will be an indicator for the sign of end, as all the nodes in a subtree should 
have a greater level than the parent node. Therefore, if the level of a node is equal or less than 
the level of node(i), that indicates the end of the subtree.  

3.3 XPath Accessibility in LS/SST Approach 

In this section, we will focus on the accessibility aspects of the XPath language in our 
proposed approach namely LS/SST. The XPath language is used for addressing nodes in a 
document or matching sets of nodes by their relationships to a context node. An XPath 
navigation expression is a sequence of navigation steps separated by the “/” symbol. The 
expressions used to select nodes are called location paths. The axis describes the tree 
relationship to the context node and defines how to navigate the document tree.  
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Figure 5. XPath Axis in LS/SST Model 

A navigation expression returns a list of nodes. The order is defined by the document order 
for forward axis or the reverse document order for backward axis. The possible value for 
AxisSpecifier are child, descendent, parent, ancestor, following-sibling, preceding-sibling, 
following, preceding, self, descendent-or-self, and ancestor-or-self etc. Figure 5 clearly 
demonstrates the connection of each axis in LS/SST model. The mapping vector in the middle 
of Figure 5 is a simple mechanism to retrieve the corresponding node signature in Sequential 
Signature Table with given vector index.  It is important to note that the axis forms a partition 
of the document, from the point of view of the current node (self). The ancestor, descendant, 
following, preceding and self axes partition a document, in which the attribute nodes are 
ignored, they do not overlap and together they contain all the nodes in the document. 
Definition 4. XPath axis in LS/SST approach. 

1. Ancestor axis: The ancestor axis contains the ancestors of the context node. The 
ancestors of the context node consist of the parent of context node and the parent's 
parent and so on. Thus, the ancestor axis will always include the root node, unless the 
context node is the root node. The ancestor nodes can be easily retrieved from logical 
structure as shown in Algorithm 1. First we assume the index of self node is i, then the 
ancestor nodes of self node is represented as Ancestor(i). 

Algorithm 1. Get ancestor axis of a node 
 function getAncestorAxis (i) 
 /* INPUT: self node index */ 
 /* OUTPUT: A set of nodes */ 
 { 
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 Vector result = new Vector(); 
 Node n = mappingVector.elementAt(i); 
 If (n is root)  
     return result; /* root do not have ancestor */  
 do { 
      n = n.getParentNode(); 
      result.addItem(n); 
      } while (n.getParentNode() is true); 
 return result; 
 } 

 
2. Preceding sibling axis: The preceding-sibling axis contains all the preceding siblings of 

the context node. If the context node is an attribute node, the preceding-sibling axis is 
empty.  

Algorithm 2. Get preceding sibling axis of a node 
 function getPrecedingSiblingAxis (i) 
 /* INPUT: self node index */ 
 /* OUTPUT: A set of nodes */ 
 { 
 Vector result = new Vector(); 
 Node n = mappingVector.elementAt(i); 
 If (n.getParentNode() is not true)  
     return result;    /* do not have parent node */  
 foreach child node in n.getParentNode() { 
     if( child node index < i) 
        result.addItem( child node); 
      } 
 return result; 
 } 

 
3. Following sibling axis: The following-sibling axis contains all the following siblings of 

the context node. If the context node is an attribute node, the following-sibling axis is 
empty. 

Algorithm 3. Get follow sibling axis of a node 
 function getFollowingSiblingAxis (i) 
 /* INPUT: self node index */ 
 /* OUTPUT: A set of nodes */ 
 { 
 Vector result = new Vector(); 
 Node n = mappingVector.elementAt(i); 
 If (n.getParentNode() is not true)  
     return result;       /* do not have parent node */  
 foreach child node in n.getParentNode() { 
     if( child node index > i) 
        result.addItem( child node); 
      } 
 return result; 
 } 
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4. Ancestor-or-self axis: The ancestor-or-self axis contains the context node and the 
ancestors of the context node. Thus, the ancestor axis will always include the root node. 

)()()( inodeiAncestoriAxisselforAncestor ×=−−  
5. Descendant axis: The descendant axis contains the descendants of the context node. A 

descendant is a child or a child of a child and so on. Thus the descendant axis never 
contains attribute nodes. We assume the number of descendants of node i (σ(i)) is m. 
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6. Descendant-or-self axis: The descendant-or-self axis contains the context node and the 
descendants of the context node. 
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7. Preceding axis: The preceding axis contains all nodes in the same document as the 

context node that are before the context node in document order, excluding any 
ancestors and excluding attribute nodes. 
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8. Following axis: The following axis contains all nodes in the same document as the 
context node that are after the context node in document order, excluding any 
descendants and excluding attribute nodes. Let the number of nodes is n. 
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4. OPERATION EXAMPLES 

The path expression (PE) is a string representation for locating the nodes. Let a PE have s 
substrings and separates by “/” in a path expression. We define the first PE as PE1. Then, path 
expression is represented by “PE = PE1 /PE2/…/ PEs”. In a case of simple path expression, say 
“menu/food”, PE1 = “menu”, PE2 = “food” and s = 2. With PE1 and PE2 we can get the hash 
value from the given hash function H, H”menu” = “0000 0100 1000” and H”food” = “0000 0010 
0010” respectively. Then, signature check in level signature vector indicates whether this 
pattern can be found in this XML document. In this case, since H”menu” = H”menu” ∩ LS(2) we 
know there is a high possibility that PE1 exists in level 2. And also H”food” = H”food” ∩ LS(3), 
so it is very likely that PE2 exists in level 3.  

The path expression is a very flexible representation, though it can be in a complex form. 
Wild card may be used to extract more information, for example “menu/*/category”. By using 
the LS approach, we first locate the possible level which has “menu” node (PE1). As H”menu” = 
H”menu” ∩ LS(2), level 2 will be our entry point. Then, from SST we can easily find out all the 
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child nodes of “menu” in level 3 (PE2 = “*”), which will be our candidate nodes for PE3. In 
this case, they are node index 2 (“food”), index 13 (“food”) and index 23 (“drink”). Since 
H”category” = H”category” ∩ NS(2), H”category” ≠ H”category” ∩ NS(13), H”category” = H”category” ∩ 
NS(23), the node of index 13 can be ruled out as it does not contain “category”. In order to get 
the result of “menu/*/category”, we need to visit further down to index 2 and index 23. 

LS is used for providing an early notification to avoid unnecessary traversal of a document 
which is particularly beneficial when a large quantity of XML documents exist. It is likely to 
be the case in document-centric situation. Furthermore, handling a huge file with SST 
provides the mechanism to reduce the number of subtrees which need to be visited.  It happens 
when we are dealing with data-centric XML data. In addition, sometimes large numbers of 
documents and huge files occur at the same time. The efficiency of path query navigation can 
be greatly improved by adapting LS and SST together.  

5. EXPERIMENTS 

Extensive experimental studies have been conducted to exam both LS and SST approaches. 
We have implemented our approaches in Java based on J2EE framework, and carried out a 
series of performance experiments. We first investigate the size of the index scheme on 
different data sets, and then go on to a performance study over test queries. For comparison 
purposes, we also adapt the Jaxen XPath Engine (B.McWhirter & .Strachnan, 2004) in our 
system to perform query execution on the same data sets.  

The experiments were conducted on a PC with Intel Pentium III processor with 866 MHz 
and 512 MB main memory running Windows XP. The algorithms mentioned in the paper 
were implemented in Sun Java 2 SDK, Standard Edition 1.4.2. We utilized IBM’s XML4J 
3.2.1 (XML parser for Java) for parsing XML documents. The data sets were stored on the 
local disk. We ran our experiments using three different sets of XML data and queries. The 
characteristics of the different data sets used in the experiment can be found in next section. 

5.1 The Size of LS and SST 

Table 2 displays the details with regard to the size of LS/SST on top of the DOM model for 
each dataset. The comparison of original XML size and total size used in LS/SST is presented 
in Figure 6. As mentioned earlier, hash values and level signatures are handled together in the 
main memory. SST, however, is stored separately for each corresponding XML document. 
Clearly, the size of SST, which is closely correlated with the size of each XML file, occupies 
the majority of the space in LS/SST. On the contrary, the storage requirement of hash values 
and level signatures is fairly low. The size of hash values is associated with the number of 
distinct nodes in a dataset, and the size of level signatures is highly related to the number of 
files and the depth of each file.  

For XMark 0.1 dataset (about 11,875 KB), LS/SST requires 1,108.83 KB of storage. 
Similarly, for a 31,847 KB dataset like Shakes + XMark 0.2, it generates 3,422 KB data of 
LS/SST. We noted that the storage requirement of the LS/SST technique is about 10% of the 
dataset size in general. It is important to realize that LS/SST is in a rather primitive structure 
just to gain an idea of its size, therefore some compression skills can be applied to minimize 
the storage requirement of LS/SST. 
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Table 2. Details of Datasets 

Name Size 
(KB) 

Nodes Hash Values + LS 
size (KB) 

SST size  
(KB) 

Shakes 7,920 179,763 3.36 1,074 
XMark 0.1 11,875 167,911 2.83 1,106 
XMark 0.2 23,926 336,333 4.23 2,216 
Shakes + XMark 0.2 31,847 516,096 7.4 3,422 
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Figure 6. The Size of LS/SST 

5.2 Experimental Results 

The test queries in Table 3 are highly representative for costly queries as they contain 
branching patterns. We ran 5 different queries on Shakes dataset and three queries on XMark 
0.1 and XMark 0.2. Further, eight queries were performed against Shakes + XMark 0.2 
dataset. Our results show that the LS/SST approach outperforms the tree-traversal based 
approach implemented by Jaxen.  

Table 3. Test Queries 

Query Path Query Shakes XMark 
0.1 

XMark 
0.2 

Shakes +  
XMark 0.2 

Q1 //PLAYSUBT √   √ 
Q2 //TITLE √   √ 
Q3 //SCENE/TITLE √   √ 
Q4 //PERSONA √   √ 
Q5 //NON-EXIST √   √ 
Q6 /site/regions  √ √ √ 
Q7 //item/name  √ √ √ 
Q8 //location  √ √ √ 
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5.2.1 Shakes Play Dataset 
Q1 to Q4 demonstrate that selections on the descendant axis by using the “//” symbol require a 
full tree traversal which requires a longer execution time. SST in this case provides a better 
mechanism of early notification to avoid unnecessary tree visiting. It is particularly notable 
when querying Q5 that although the query string “NON-EXIST” does not exist in Shakes 
Play,  the Jaxen approach still needs a full traversal in order to look into every element to 
make sure of the presence of a string. Due to the similarity of the test queries, the query 
performances are very much alike. The query execution times for the Shakes Play dataset are 
shown in Figure 7. It is important to note that both Jaxen and LS/SST are running on top of 
the DOM model, therefore XML parsing for each file accounts for the majority of time. 
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Figure 7. Query Execution Time on Shakes Play Dataset 

 
Table 4. Average Number of Visits in SST 

Query Number of Visits   
(Avg.) 

Nodes in Shakes 
(Avg.) 

Q1 13  
Q2 1,037 
Q3 39 
Q4 45 
Q5 0 

4,858 

 

When an unqualified subtree has been found SST can skip this subtree by using the skip 
function provided in Section 3.3. In the experiment, there are in total 37 XML documents in 
Shakes Play. For answering Q1, SST visits 13 nodes out of 6638 in “HAMLET.XML” and an 
average of 13 node visits for each document in Shakes Play. It is quite surprising that Q2 visits 
1,037 nodes out of 4,858 nodes in SST. When we looked into the Shakes Play dataset we 
found that “TITLE” nodes are actually spreading in many different subtrees, such as 
“/PLAY/TITLE”, “/PLAY/PERSONAE/TITLE”, “/PLAY/ACT/TITLE”, 
“/PLAY/SCENE/TITLE” etc. That is the reason why the number of visited nodes is 
significantly greater than others. The average number of visits for each test query is shown in 
Table 4. 
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5.2.2 XMark Dataset 
We further investigated our approach in querying the XMark datasets. Figure 8 shows the 
performance results in XMark at scaling factor 0.1 and 0.2, respectively. In Q6 the path is 
much simpler than other branching and wild cards queries, being straight from root to “site” 
and then “regions”, and therefore LS/SST performs similarly to Jaxen on both XMark 0.1 and 
XMark 0.2 datasets. Since the size of XMark 0.2 (22.8 MB) is about twice the size of XMark 
0.1 (11.3 MB), as expected the execution time is growing linearly with increasing data size. 

For a simple path query like Q6, SST visits 2 nodes out of 13,407 in the first file of XMark 0.1 
(xmark00000.xml). On average SST only retrieves 2 nodes out of 11,194 in the whole XMark 
0.1 dataset. The average number of visits for each query can be found in Error! Reference 
source not found.. Since the number of nodes in each file of XMark dataset varies, we show 
the nodes in the dataset on average in Table 5. For the branching queries like Q7 and Q8, SST 
still benefits from skipping unnecessary subtree visits. 
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Figure 8. Query Execution Time on XMark Dataset 

Table 5. Average Number of Visits in SST 

Query Number of Visits   
(Avg.) 

Nodes in Dataset 
(Avg.) 

Q6 2 
Q7 3,010 
Q8 4,513 

11,194 
(XMark 0.1) 

Q6 2 
Q7 3,044 
Q8 4,552 

11,301 
(XMark 0.2) 

 
 
 



 98

5.2.3 Shakes + XMark 0.2 Dataset 

 
Figure 9. Query Execution Time on Shakes + XMark 0.2 

In the experiment we also combined the Shakes Play and XMark 0.2 data sets to create a 
more complicated data source. The reason we are doing this is that it can represent a 
document-centric scenario where the documents largely exist, and the idea of level signature 
can be more useful in reducing access to the documents. The query execution times on 
combined data sets can be found in Figure 9.  

While the execution time of Jaxen implementation increases due to the growth of the data 
source, our approach excludes a certain number of documents by performing a level signature 
check before actually accessing files. LS/SST retrieves 27 XML documents out of 64 for 
answering Q7, as Jaxen needs to access 64 documents. This is probably the best result that 
could be expected, because the LS approach rules out all 37 Shakes Play data sets without any 
false drop issue. However, we found the false drops increased dramatically when querying Q2 
against XMark 0.2. There are 27 XML documents in XMark 0.2, totalling 22.8 Mb of data. 
The LS approach only excludes 18 out of 27 XMark 0.2 documents, which means the other 9 
documents are incurring false drops. However this is being fixed during the second stage of 
the SST check. The reason why LS did not function as we expected is that XMark documents 
consist of a more complicated structure which has up to 13 levels and 13 thousand nodes for 
each file. We use 32 bits signature in our experiment which may not be enough to represent 
different nodes. The problem can be improved by increasing signature length or refining the 
hash function to spread signed bit in a more reasonable way. 
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Avg. query execution times by data size
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Figure 10. Average Execution Time 

Figure 10 shows the average query processing time against data size for LS/SST and Jaxen 
respectively, where the x-axis shows the data size for Shakes Play (7.5 MB), XMark 0.1 (11.3 
MB), XMark 0.2 (22.8 MB) and Shakes+XMark 0.2 (30.3 MB) as listed in Table 17. The 
execution time of Jaxen drops significantly in 11.3 MB data sets due to a simple path query 
involved in Q6 which reduces average processing time greatly. As for queries Q1 to Q5 
against 7.5 MB data sets, all involved branching queries are much more time consuming than 
Q6. LS/SST with 30.3 MB dataset has a shorter average execution time than 22.8 MB dataset, 
since level signature rule out the unqualified files in the first place and the effect of fast 
processing in Q5.  The reduced number of files greatly decreases parsing time as compared 
with the Jaxen approach. 

6. CONCLUSION 

Query languages for XML are typically based on regular path expressions that travel the 
logical XML structure. The evaluation of such flexible expressions is generally expensive. 
Pattern matching and branching queries, for example, depend heavily on recursive traveling in 
XML logical structures. The evaluation of such path expressions is a crucial issue to improve 
the efficiency of XML query evaluation. 

In this paper, we propose a novel approach, namely LS/SST, to enhance the ability of path 
navigation with low storage and construction costs. This approach can be easily implemented 
into J2EE framework as a service based query execution enhancer. To begin with, each node 
in XML logical structure has been assigned a hash value, and then the hash value is 
aggregated to its ancestor nodes to form superimposed signatures in SST. Simply put, the 
concept is to increase the visibility of a subtree to the parent node. Therefore, the presence of a 
node can be determined far earlier without visiting the whole subtree. With this knowledge, 
unnecessary tree visiting can be minimized to a certain level. For LS, the level signature is 
derived from superimposing the hash values of the nodes in the same level. The level signature 
checking can identify the existence of a give path in the document level. In summary, LS and 
SST serve different purposes, the first can rule out XML documents which do not contain a 
desired path, while the latter can significantly reduce unnecessary traversal in a document. 
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In this paper, we have described the prototype for our ongoing research. Our experimental 
results confirm that LS/SST enhances XML query execution performance. This is particularly 
notable if the query is complex or branchy. We are currently working on developing a 
complete query processing engine based on this method. We find the idea of using level 
signature to be quite beneficial due to the fact that XML Query languages, XQuery for 
example, use “axis” heavily in evaluating queries. And if the DTD information of XML exists, 
it can give great help for producing signature. In the future we plan to concentrate on query 
rewriting and optimizing techniques to further improve query execution.  
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