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ABSTRACT 

In this journal, we present a method called “AI Game Playing Approach for Fast Processor Allocation in 
Hypercube Systems using Veitch diagram (AIPA)” which achieves a fast and complete subcube 
recognition with a complexity that is far less than that of Gray Code (GC), Buddy, Modified Buddy, 
Modified Gray Code, Free List, Heuristic Processor Allocation (HPA), Tree Collapsing (TC) and other 
existing allocation policies. The crux of the strategy is to identify a free subcube that can fit the Veitch 
diagram (also called as the Karnaugh map or K-map). The cells in the Veitch diagram attribute the 
processors. An AI Game playing approach is applied to ensure optimality along with a graph coloring 
approach with a resultant penalty factor computation, for effective implementation of the strategy. The 
algorithm deals with cubic as well as non-cubic allocation and is not only statically optimal but also 
optimal in a dynamic environment. Extensive performance analysis has been carried out with outcomes 
discussed comparatively with other allocation strategies. It is shown that our approach supersedes many 
others in terms of allocation and deallocation costs. The algorithm is also efficient in memory utilization 
and minimization of system fragmentation. Moreover, the simulation results illustrate that the AIPA 
strategy significantly improves performance.  
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1. INTRODUCTION 

With its fascinating properties [i], hypercube topology has been a major appeal for researchers 
of different fields in recent years. A hypercube, also known as a binary n-cube is a parallel 
computer with 2n processors (represented as cells in the Veitch diagram). Each cell 
corresponds to one of the 2n vertices of the n-cube. In general, an incoming task is allocated a 
set of required processors and upon completion, the processors are released for future requests. 
The former process is ascribed as "allocation" and the latter as "deallocation". Several 
processor allocation schemes have been proposed in the literature [c], [d], [e], [g], [h], [k], [l], 
[m], [n]. 

An attempt to realize complete subcube recognition prevails as a challenging task. A 
subcube is a subgraph of a hypercube that preserves the properties of the hypercube [i]. 
Tremendous efforts have been pooled in to minimize "internal fragmentation" [k]. However, 
this is not the only concern for researchers; there are other critical parameters such as efficient 
processor utilization, memory overhead etc. Processor allocation and deallocation have 
become important issues due to the need for efficient utilization of the parameters mentioned 
above. 

One way to enhance processor utilization is to identify all subcubes that are available in 
the system. Internal fragmentation occurs when the processor allocation scheme allocates 
more number of processors than what is requested. External fragmentation [c] on the other 
hand, occurs when a subcube large enough to house the incoming task may not be satisfied 
since the processors are scattered as subcubes of lower dimension. 

In our proposed scheme, the Veitch diagram [b] is used to represent the hypercube system 
in an attempt to lessen memory overhead. Incomplete subcubes are maintained as a catalog of 
colors. Each incomplete subcube asserts a color that is not the same as that of its neighbors.  

Performance analysis reflects that the proposed scheme surpasses the existing strategies in 
terms of cost incurred in allocation, deallocation and fragmentation at higher workloads. 

The rest of the journal is organized as follows. Section II presents the preliminaries. 
Section III describes our strategy. Section IV delineates the theoretical analysis and 
performance comparison along with simulation results to contrast the proposed strategy with 
others. Finally concluding remarks unfold in section V. 

2. PRELIMINARIES 

We consider a n variable Karnaugh map [b] to represent a n-cube system where individual 
nodes or subcubes are represented by a n-bit string of ternary symbols from Σ={0,1,X} where 
X denotes “don’t care” [a]. For example, in a 3-cube system (Figure 1), 0XX denotes the 
nodes 000,001,010,011 and XXX denotes all the eight nodes. 
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                                                                            Figure 1. 3-cube system. 

DEFINITION 1.   The Hamming Distance between two subcubes a = a1a2…an and b = 
b1b2…bn; where ai ε Σ and bi ε Σ ∀ i ε [1, n]; can be defined as H(a,b) = ∑ =

n

i 1
h(ai, bi) = 1 if 

ai ≠ bi and ai, bi ε {0, 1}, and 0 otherwise. For example, H(00x, 1xx) = 1 and H(1x0, x0x) = 0. 
 
DEFINITION 2. The Exact Distance between the two subcubes a and b above, can be defined 
as              E(a, b) = ∑ =

n

i 1
e(ai, bi) where e(ai, bi) = 0 if ai = bi and 1 otherwise. For example, 

E(0x1, 10x) = 3 whereas H(0x1, 10x) = 1. 
 
DEFINITION 3.    An Incomplete Subcube (ISC) [d] S can be defined as follows: 

1) It consists of a group of disjoint subcubes {S1,S2,…, Sm}, (1≤m≤n) with dimensions 
d1,d2,…,dm, respectively. 

2) H (Si, Sj) =1 ∀ 1 ≤ i , j ≤ m, i ≠ j. 
3) E (Si, Sj) = di – dj + 1 for all 1 ≤ i ≤ j ≤ m. 
        di is the dimension and d= ∑ =

m

i 0
2di the size of ISC S. S1 is called the head of the 

ICS S. 
 

DEFINITION 4. The Karnaugh map (K-map) is a matrix of cells (squares). Each square 
represents a minterm and in this journal, they refer to a processor in a hypercube. Combination 
of adjacent cells represents a subcube. The address of the adjacent processors (cells) in the K-
map differs exactly by 1 bit [b]. 
EXAMPLE 1. (Figure 2 and Figure 3) Consider a 3-cube system. This is represented in K-map 
as a 2 x 4 matrix. Processors X and Y are adjacent and thus differ by 1 bit. 

   
 00 01 11 10 

0 000 Y X 010 
1 100 101 111 101 

 

             Figure 2. Karnaugh map (K-map) representation. 

 

Figure 3. 3-cube system showing adjacency. 
X

Y
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DEFINITION 5. Internal Fragmentation occurs in case of cubic allocation when the actual 
required processors for the task are not in the form of 2k, where k is the task dimension.  
 
DEFINITION 6. External Fragmentation occurs when a sufficient number of free processors 
cannot form an incomplete subcube of the required size. The physical fragmentation problem 
is similar to that of the memory fragmentation and may result from the sequence of incoming 
and outgoing tasks or simply a “bad” allocation [c].       

                     10                     11                                                               10                     11 
 
 
 
 
 
 
                     00                     01                                                                
00              01 
 Fragmentation Due To Bad Allocation                                                          No Fragmentation 
                                    (a)           (b) 

Figure 4. Allocation in a 2-cube system. 

EXAMPLE 2. Consider the 2-cube system shown in Figure 4. If an incoming task requesting 
one node each is allocated as {00,11} (Figure 4a) instead of {00,01} (Figure 4b), a subsequent 
request for a 2-node cannot be allocated.  
 

 

 

 

 

 

 

 

Figure 5. Tetris Game. 

DEFINITION 7. Graph Coloring  
The Graph Coloring is a technique of assigning same color to all the free adjacent processors 
in the incomplete free subcube. A different color is assigned to each incomplete subcube. 
 
DEFINITION 8. Tetris Game  
The AI game built-in is the Tetris Game (Figure 5). In this game, one must fit the falling 
pieces to form full lines. One can rotate and translate the falling pieces. The game ends when 
no more pieces can fall i.e. when incomplete lines reach the top of the board. 
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3. LITERATURE REVIEW 

3.1 Free List Strategy 

This strategy maintains a list of free subcubes available in the hypercube, with one list for a 
dimension. The free list consists of n+1 independent lists, where the ith list corresponds to 
dimension i, for i ≤ 0 ≤ n. The elements in the list are represented by their unique address (a 
sequence of n ternary symbols). A n-cube is represented as a sequence of n “x”s initially.  

An incoming request for dimension k gets allocated by assigning the first element in the 
list of dimension k i.e., when there is a request for a k-cube, for k ≤ n, one of the nearest 
higher dimension subcubes is decomposed from the most significant bit side for finding a k-
cube.  

Although the allocation steps are simple, the strategy involves a quite complicated 
deallocation process. Specifically the deallocation process has to do three steps. First, merge 
the released subcube with any other subcube to form a bigger cube, or guarantee another 
available cube of the same dimension. Next, it searches all subcubes of newly produced cube 
and removes them from their corresponding lists. Finally, repeat the first two steps until 
nothing can be done further. 

3.2 Buddy Strategy 

In this strategy, 2n allocation bits are used to keep track of the availability of the nodes in a 
hypercube of dimension n. A value 0 (1) in the allocation bit indicates the availability 
(unavailability) of the corresponding node. Typically, this strategy involves a logical 
representation of hypercube in the form of a binary tree structure. In the binary tree structure, 
every leaf node represents the processor and every intermediate node attributes the subcube of 
some dimension of hypercube. The dimension of the subcube decreases as we choose a node 
in the tree from root to leaf. 

The allocation of requested subcube is done by a search made in the tree representation of 
hypercube. The search initiates from the root and extends till the leaf node. So once a node in 
the tree for requested dimension is found to be free, its allocation bit is set so as to declare 
those set of processors to be in allocated state. 

The deallocation procedure is simply the reverse of allocation procedure. In the same 
fashion as that of allocation method, the tree is traversed and respective node’s allocated bit is 
reset. 

3.3 Gray Code Strategy 

This strategy works in similar fashion to that of Buddy strategy. The difference lies in the way 
the nomenclature is done to address the processors in the hypercube. The addressing is done 
based on Gray Code (GC). 
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3.4 Modified Buddy Strategy 

Modified Buddy Strategy eliminates the disadvantage of buddy strategy. Typically, it searches 
one level further in the tree structure. In other words, if there is no free subcube of dimension, 
this strategy tries to merge subcube of smaller dimension. This strategy works similar to that 
of buddy strategy where 2n allocation bits are used to keep track of the availability of all 
nodes. An integer α represented bits is regarded as free if (αm)0\1 and (αm)1\1 are free. For 
example, an integer three in two bits, i.e., 11, is free if integers six and seven in 3 bits are free. 
This notation implies the free subcubes of small dimension. 

The allocation scheme is similar to that of Buddy strategy as long as there is a free subcube 
of requested dimension. If one such does not exists, then unlike Buddy strategy, this strategy 
traces one level down the tree structure and tries to find two free subcubes at that level. These 
two subcubes together constitute the subcube of requested dimension. Such processes could be 
carried out only if the hamming distance between the two subcubes chosen is 1. This process 
extends until the request is processed or till the tree is traced till the leaf node. 

The deallocation procedure is simply the reverse of allocation procedure. The tree is 
traversed and respective node’s allocated bit is reset. 

3.5 Tree Collapsing Strategy 

Tree collapsing strategy can recognize and assign subcubes based on requested task size 
instead of any arbitrary size. This strategy has much less complexity than others in generating 
search space. 

This strategy involves collapsing the binary tree representation of a hypercube 
successively so that the nodes which form a subcube but are distant would be brought close to 
each other for recognition. The strategy can be implemented efficiently by using right rotating 
operations on the notations of the set of subcubes corresponding to the nodes at a certain level 
of binary tree representations. 

4. AI GAME PLAYING APPROACH FOR FAST 
PROCESSORALLOCATION (AIPA) 

AI Game Playing approach for Fast Processor Allocation (AIPA) is developed with an idea of 
bringing about a full recognition among the 2n processors in the hypercube. It also has a better 
efficiency than most of the current existing allocation policies. This strategy is applicable for 
both cubic as well as non-cubic     allocation [c]. The allocation algorithm uses a heuristic 
function [g] to identify the apposite subcube to be allocated and the Tetris Game approach for 
mapping the tasks onto the K-map. The allocation and deallocation algorithm uses the Graph 
Coloring technique [f], which keeps track of all the incomplete subcubes with the help of a 
color table. Each incomplete subcube has a unique color and each processor in that subcube 
has the same color. 
 
 
 



AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE 
SYSTEMS USING VEITCH DIAGRAM 

 63

Algorithm: Allocation 
Input       : Requested No. of Processors, D. 
Output     : Allocates required number of cells in the K-map for the  
              requested task. 
Variables : Color Table, CT; Task, T; Color Table Pointer, CTptr; 
              Penalty Factor of Ti, PFi; Task Shape, TSi 1 ≤ i ≤ v where v 
              is the number of possible task shapes. 
Method : 
Begin 
  For each CTptr in CT begin 

  For I = 1 to v begin  
   PFi = Trace (CTptr, CTptr, TSi) 
   Choose (First_minval (PFi))               
                  Proc_allocated = 1 ∀ Allocated Processors 

              Reset (Visited Flags) 
  End for 

        Coloring ( ) 
  End for 
End  
 

The allocation algorithm is used to allocate a set of processors to the given task. It takes 
care of both cubic as well as non-cubic tasks. The “Trace” function moves the Task Shape 
TSi over the Karnaugh map K using the Tetris movement. The Task Shape TSi with minimum 
Penalty Factor is chosen. If more than one task shape has the same value, then the one with a 
minimum height along with an additional priority of minimum width on placement in the K-
map is chosen. The “Coloring” function assigns a color to all unallocated and uncolored 
processors in the hypercube.  
 

Algorithm: Deallocation 
Input  : Subcube, SCi, 1 ≤ i ≤ n where n is the number of 
incomplete 
              subcubes. 
Output     : Nil 
Variables : Processor in Subcube SCi, PE; Address, A; Processor, 
Pi; 
              Width of Pi, Wi; Color Table CT; Height of Pi, Hi ; Color,  
              C; Color stack CS; 
Method :  
Begin 
  For each PE in SCi begin 
   Alloc-Status (PE) = False    
   
  End for 
            For each C in CT begin  

            Push (C, CS) 
  End for  
  Coloring ( ) 
          For each Pi in hypercube begin                 

                  Recompute Hi & Wi of Pi    
   
   Hval (Pi)      
       End for 
End 
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In the deallocation algorithm, the height of each processor is the number of free continuous 
processors, which are vertically above this processor. The width of each processor is the 
number of free continuous processors, which are horizontally to the right of this processor. 
The Color Table keeps track of the colors in the K-map. Once the processors are freed, the 
“Coloring” function will be invoked. 

4.1 Example 

Assume at a given instance, tasks T1, T2, T3, T4, T5, T6, T7, T8 are allocated as shown in the 
Figure 6. A Color Table has a pointer to the incomplete subcubes in this 6-cube system 
represented by the two colors.  
 

                  

 
 
 
 
 
Figure 6. A 6-cube system.                         Figure 7. Possible task shapes for a task size of 3 (non-cubic). 
 

Suppose now, if a task of size 3 is requested, all possible task shapes for these 3 processors 
are generated. (Figure 7). Traversal through the free processors is shown in the Figure 6 by 
dashed lines. Each task shape is made to fit during the traversal along the dashed lines. The 
task shape that fits with a minimum penalty factor is then considered finally. In this case, upon 
traversal, the minimum penalty factor is found to be 6 (2+2+2) at the address {X10101, 
111101} (Figure 8). The deallocation algorithm involves releasing of processors by accepting 
the address of any one of them. Now consider a K-map as follows. In this case five tasks have 
already been allocated (Figure 9). The freed processors are assigned colors using graph-
coloring scheme. Since an incomplete subcube {0X1X} is not adjacent to the incomplete 
subcube {110X, 1001}, each of them is assigned a different color. 

 
 

 

 000 001 011 010 110 111 101 100 
000 T1 3 3 T7 T7 3 4 3 
001 T1 3 3 T7 T7 3 4 3 
011 T1 3 4 2 T6 3 4 3 
010 T1 3 4 3 T6 T6 2 T8 
110 1 4 4 4 1 T5 2 T8 
111 T2 3 4 3 T4 T5 2 T8 
101 1 4 4 3 T4 2 3 T8 
100 T3 3 4 3 T4 3 4 2 

Color 
Table 
Blue 
Pink 
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Figure 8. K-map representation consisting of 5 tasks.                          Figure 9. After allocation of task 9. 

STEP 1: RESET THE ALLOCATION FLAG TO Nil 
Upon the deallocation of task 4, the processor at 0100 is deallocated by setting its 
allocation flag to nil. 

STEP 2: COLORING 
Reset all the deallocated processors, by setting allocated flag to nil and calling 
coloring function, which colors the k-map. If there are two incomplete subcubes 
then K-map on coloring has two colors. (Figure 10) 

STEP 3: HEURISTIC FUNCTION VALUE UPDATES 
      Compute the Heuristic Value of all the processors adjacent to the deallocated 
processors.        

      Updated Heuristic values are shown in the Figure 11.  
 

 

 

                           

Figure 10. After deallocation of task 4.                                                          Figure 11. Updated k-map. 

 

 00 01 11 10 
00 T5 T5 2 2 
01 T4 T5 2 2 
11 1 2 T3 T1 
10 T2 1 T1 T1 

 000 0
0
1 

011 010 110 111 101 100 

000 T1 3 3 T7 T7 3 4 3 
001 T1 3 3 T7 T7 3 4 3 
011 T1 3 4 2 T6 3 3 3 
010 T1 3 4 3 T6 T6 T9 T8 
110 1 4 4 4 1 T5 T9 T8 
111 T2 3 4 3 T4 T5 T9 T8 
101 1 4 4 3 T4 2 2 T8 
100 T3 3 4 3 T4 3 4 2 

Color 
Table 
Blue 
Pink 

Color 
Table 
Blue 
Pink 

 00 01 11 10 
00 T5 T5 2 2 
01  T5 2 2 
11 1 2 T3 T1 
10 T2 1 T1 T1 

 00 01 11 10 
00 T5 T5 2 2 
01 2 T5 2 3 
11 2 2 T3 T1 
10 T2 1 T1 T1 

Deallocated Task 
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5. PARALLEL AIPA 

Parallel AI Game Playing approach for Fast Processor Allocation (Parallel AIPA) which is 
developed with an idea of utilizing all the free processors in the hypercube can be extended to 
the AIPA strategy, hence bringing down the time complexity to the O(n). 
Algorithm: Allocation 
Begin 
      Flood the Veitch Diagram & Task Size to be allocated among  
                                                          all processors 
           For each Processor in Parallel 

         For each Task Shape for a task 
             If task shape can be placed taking Processor Position  
                                    as origin in the Veitch Diagram 
              Compute the Penalty Factor 
          End For 
          Find the Minimum Penalty Factor among these task shapes 
               If (Processor is a Client) 
             Receive the Minimum Penalty Factor of all its  
                                                             Neighbours 
             Find the Minimum among all these Penalty Factors 
          Else If (Processor address is one's complement of Client  
                                                               address) 
             Send its Minimum Penalty Factor to its Neighbours 
          Else 
             Receive the penalty factor for its children 
             Send the Minimum Penalty Factor among them to its  
                                                               Parents 
           End For 
           Invoke the Coloring Mechanism  
           Recompute the Heuristic Value 
End 

  
Algorithm: Deallocation 
Begin 
      Flood the Task to be deallocated 
           Reset the Color Table 
           For each Processor in Parallel 
          If (Task is executed in the Processor) 
         Allocation_flag = 0; 

           End For 
           Invoke the Coloring Mechanism 
           Recompute the Heuristic Value   
End 

6. PARALLEL AIPA SIMULATION STRATEGY 

The simulation process of the Parallel AIPA strategy is divided into four modules namely the 
Input module, Scheduler module, Allocation strategy module and the Performance Analysis 
module.  

In the Input module, the various workloads consisting of a set of jobs, where a triplet of 
job defines a job size, hold time and arrival time. The job size (n) is the number of processors 
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requested by a job to be allocated. This parameter is generated by using one of the four 
distributions namely Normal, Uniform, Geometric and Hypergeometric. To model practical 
systems more realistically, we assumed a Poisson job arrival process. A third parameter about 
hypercube workloads concerns job hold time which is generated using the exponential 
distribution. In the Scheduler module, the tasks are ordered in the ready queue for execution. 
We considered a non-preemptive scheduler namely Scan Up. The output of the scheduler 
module is the scheduled workload. The output of the scheduler module serves as an input to 
the Allocation strategy module. In this module, processor requests of the scheduled workloads 
are processed by the Parallel AIPA allocation and deallocation algorithms. In the Performance 
Analysis module, the performance of the Parallel AIPA strategy is compared with various 
other existing strategies in terms of system utilization, mean response time, allocation and 
deallocation time complexities and memory overhead. 

6.1 Process Execution 

The process execution involves a set of stages. When the tasks arrive, the system is set in 
ready state. A ready queue is maintained to track the tasks that have reported. Once the tasks 
are subjected to processing, the system switches to execution state. An execution queue is 
maintained to list those processes that are under processing. The above issue is described in 
the following diagram (Figure 12).  
 

 
Figure 12. States involved during the execution. 

Once the task is serviced, the system calls the deallocator to free the processors involved. 
Only then, will the next request be serviced upon calling the allocator. 

6.2 Simulation Details 

Simulation was carried out with the help of a Parallel JAVA [JOPI] simulator. The Java 
object-passing interface (JOPI) provides an infrastructure for a parallel programming 
environment in Java. It yields the necessary functionality to write object-passing parallel 
programs. The main features of JOPI are: (1) It is suitable for clusters and distributed 
heterogeneous systems, (2) It utilizes the object-oriented programming paradigm for parallel 
programming thus simplifying the development process. 

JOPI provides an MPI- like interface that can be used to exchange objects among 
processes. Using objects to exchange information is advantageous because it facilitates 
passing complex structures and enables the programmer to isolate the problem space from the 
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parallelization problem. Software agents were used to provide the necessary functionality on 
the participating processors. 
 
 
 
 
 
 
 
 
 . . .  
  
 
 
                        Workstation 1                                     Workstation 2                                 Workstation n 
         
 

                                      . . . . . 
 

                                        
Figure 13. JOPI Run-Time Environment.  

This system facilitates high performance computing in Java (parallel Java) for clusters or 
heterogeneous systems. JOPI class library provides the parallel programming APIs. The 
environment as shown in Figure 13 helps in automatic scheduling and deploying of parallel 
JOPI processes on remote machines and JOPI client services provides users with environment 
monitoring and control commands. Software agents were used to provide the necessary 
functions that support the JOPI on clusters and distributed environments. Some of the benefits 
of using agents are: portability, expandability, flexibility, security, and resources management. 
In addition, the system is written completely in standard Java and can be used on any machine 
that has a Java virtual machine (JVM). 

7. PERFORMANCE COMPARISON 

The proposed AIPA strategy has the allocation and the deallocation complexities of O(2n/2) & 
O(2n) respectively and a space complexity of Ω(2n) for both allocation as well as deallocation 
strategy. The Parallel AIPA strategy, however has the allocation and the deallocation 
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complexities of O(n) & O(n) respectively. Hence the basic difference between these two 
strategies lies here. The complexities of the two strategies are calculated with the help of [j]. 
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According to the Graph-1, the allocation cost of the AIPA strategies is much lesser when 
compared to most of the other existing strategies. 

In the case of deallocation cost, our approach shows a better performance than the MSS [n] 
as shown in Graph-2. In the above graph, few strategies are not shown, since their cost is very 
high when compared to our proposed strategy.  

Another major performance parameter to be dealt with is fragmentation. The main purpose 
of Penalty Factor in our approach is to reduce the external fragmentation in the hypercube. On 
the other hand, the non-cubic allocation [c] that is possible in our strategy eliminates the 
internal fragmentation. The space complexity of this approach is Ω(2n) since the memory 
required in the AIPA strategies is only with respect to the K-map. 

7.1 Simulation Results 

Our strategy is compared with others via simulation to verify the performance improvement. 
Simulation results, however does not consider the strategies that has a greater complexity such 
as Free List [h] and Modified Buddy [m]. Most of the assumptions used in this simulation are 
the same as in [m].  

Under the simulation conditions defined in [m], the performance of strategies are measured 
in terms of Ts, E and J, which are averaged over 100 independent runs, and defined as follows 
[g]: 
J   : Number of requests that can be satisfied in time interval T 
U  : Total utilization of processors by requests in time T 

U = ∑
=

J

i it
iI

1

||
2  

where |Ii| is the dimension of requested subcube and ti is the residence time until T of the 
request Ii 
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E  : Efficiency of the strategy                         E = 
T

U
n2

 

Table 1. Efficiency of processor allocation strategies (E)             

UNIFORM NORMAL  
Dim BUDDY GRAY 

CODE 
HPA Parallel 

AIPA 
BUDDY GRAY 

CODE 
HPA Parallel 

AIPA 
5 82.42 82.84 83.17 90.12 79.85 80.25 80.92 87.23 
6 81.17 81.14 81.46 89.67 79.66 79.70 79.81 87.12 
7 80.49 80.94 81.43 89.03 78.89 78.79 79.33 86.66 
8 82.25 82.14 82.36 91.23 79.83 79.75 80.49 8.82 
9 82.28 82.31 82.78 91.84 78.14 78.02 78.63 86.13 

10 82.88 83.09 83.18 92.27 77.40 77.33 77.82 85.42 

Table 2. The allocation time (Ts) 

UNIFORM NORMAL  
Dim BUDDY GRAY 

CODE 
HPA Parallel 

AIPA 
BUDDY GRAY 

CODE 
HPA Parallel 

AIPA 
5 11.2 14.9 10.2 9.3 10.4 14.1 10.2 9.1 
6 16.1 21.7 16.4 15.2 15.0 20.7 15.1 12.6 
7 26.3 36.5 27.4 23.6 26.7 34.5 25.5 21.7 
8 46.9 63.8 46.2 42.6 46.5 60.3 43.8 42.8 
9 89.5 110.9 84.9 74.5 83.7 106.2 79.3 75.3 

10 168.0 212.9 164.1 149.2 166.9 213.2 148.9 146.3 
 
Table 1 shows that the Parallel AIPA strategy performs better than Buddy [m], Gray Code 

[m] and HPA [g] strategies in terms of the efficiency. This result comes from the fact that 
AIPA strategies can recognize more subcubes than the other strategies. It can be observed 
from Table 2 that the allocation time of the Parallel AIPA strategy in time T is less than the 
Buddy, Gray Code and HPA schemes. 

8. FUTURE WORKS 

On further analysis of AIPA Algorithms, it proved to be promising enough to be extended to 
other two similar interconnection network topologies like 2-D Mesh & 2-D Toroid. The 2-D 
Mesh topology as shown in the Figure 14 is a generalization of the hypercube, in which there 
are more than two nodes along a dimension. Each interior processor has 4 adjacent processors 
and processors along the edges have two to three adjacent processors. The veitch diagram can 
be replaced by a grid structure (for mesh) whose dimensions are inherited from the 2D Mesh. 
Each cell in the grid assembles a processor in the mesh. 
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Figure 14. 2-D Mesh. Figure 15. 2-D Toroid. 

 
The 2-D Toroid, on the other hand is merely the topology achieved by wrapping the ends 

of the mesh. The 2-D Toroid resembles the veitch diagram in its structure as shown in the 
Figure 15 but varies in its dimension from the conventional toroid. The proposed AIPA 
strategies can easily be applied to these topologies by redefining the dimensions of the veitch 
diagram to the corresponding topology. Also the strategies can now be applied for the 
allocation and deallocation process in both these topologies. However, a further study is 
required for these topologies in terms of efficiency and performance. 

9. CONCLUSION 

High performance on a multiprocessor system is achieved by using an efficient processor 
allocation scheme. To maximize the processor utilization and minimize the time between the 
starting of a task and its completion, processor allocation and deallocation strategies have 
become important topics. In this journal, a processor allocation scheme based on the AIPA 
policy has been introduced for the hypercube computers.  

Using this policy, a requested set of processors (both cubic and non-cubic) is allocated to 
the Veitch Diagram [b] that represents the hypercube system by representing the tasks in the 
form of Tetris Game blocks and trying to fit these blocks into the Diagram. Quick recognition 
of the incomplete subcubes is accomplished by using Graph Coloring technique [f]. Each 
incomplete subcube had a unique color. Since our proposed strategy also deals with non-cubic 
allocation [c], the problem of internal fragmentation is eliminated. 

The performance analysis implies that the proposed AIPA policies are better than the 
existing allocation algorithms on an overall basis. Furthermore, by incorporating temporal 
parallelism in our strategy, the time complexity is improvised. The simulation results 
corroborate the statement above, by showing that our proposed strategy gives a better 
processor utilization compared to the previous bottom-up schemes, such as the Buddy strategy 
[m], GC strategy [m] and HPA strategy [g]. Moreover, the AIPA strategy has a less search 
time than the other existing strategies. 
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