
IADIS International Journal on Computer Science and Information Systems
Vol. 1, No. 1, pp. 57-72
ISSN: 1646-3692

 57

AI GAME PLAYING APPROACH FOR FAST
PROCESSOR ALLOCATION IN HYPERCUBE

SYSTEMS USING VEITCH DIAGRAM

Srinivasan T
Department of Computer Science and Engineering

Sri Venkateswara College of Engineering, Sriperumbudur, India - 602105

Srikanth PJS

Department of Computer Science and Engineering
Sri Venkateswara College of Engineering, Sriperumbudur, India - 602105

Praveen K
Department of Computer Science and Engineering

Sri Venkateswara College of Engineering, Sriperumbudur, India - 602105

Harish Subramaniam L

Department of Computer Science and Engineering
Sri Venkateswara College of Engineering, Sriperumbudur, India - 602105

ABSTRACT

In this journal, we present a method called “AI Game Playing Approach for Fast Processor Allocation in
Hypercube Systems using Veitch diagram (AIPA)” which achieves a fast and complete subcube
recognition with a complexity that is far less than that of Gray Code (GC), Buddy, Modified Buddy,
Modified Gray Code, Free List, Heuristic Processor Allocation (HPA), Tree Collapsing (TC) and other
existing allocation policies. The crux of the strategy is to identify a free subcube that can fit the Veitch
diagram (also called as the Karnaugh map or K-map). The cells in the Veitch diagram attribute the
processors. An AI Game playing approach is applied to ensure optimality along with a graph coloring
approach with a resultant penalty factor computation, for effective implementation of the strategy. The
algorithm deals with cubic as well as non-cubic allocation and is not only statically optimal but also
optimal in a dynamic environment. Extensive performance analysis has been carried out with outcomes
discussed comparatively with other allocation strategies. It is shown that our approach supersedes many
others in terms of allocation and deallocation costs. The algorithm is also efficient in memory utilization
and minimization of system fragmentation. Moreover, the simulation results illustrate that the AIPA
strategy significantly improves performance.

IADIS International Journal on Computer Science and Information Systems

 58

KEYWORDS

External / Internal Fragmentation, Graph Coloring, Hypercube, Incomplete subcube, Veitch diagram,
Penalty Factor, Processor Allocation / Deallocation, AI Game Playing.

1. INTRODUCTION

With its fascinating properties [i], hypercube topology has been a major appeal for researchers
of different fields in recent years. A hypercube, also known as a binary n-cube is a parallel
computer with 2n processors (represented as cells in the Veitch diagram). Each cell
corresponds to one of the 2n vertices of the n-cube. In general, an incoming task is allocated a
set of required processors and upon completion, the processors are released for future requests.
The former process is ascribed as "allocation" and the latter as "deallocation". Several
processor allocation schemes have been proposed in the literature [c], [d], [e], [g], [h], [k], [l],
[m], [n].

An attempt to realize complete subcube recognition prevails as a challenging task. A
subcube is a subgraph of a hypercube that preserves the properties of the hypercube [i].
Tremendous efforts have been pooled in to minimize "internal fragmentation" [k]. However,
this is not the only concern for researchers; there are other critical parameters such as efficient
processor utilization, memory overhead etc. Processor allocation and deallocation have
become important issues due to the need for efficient utilization of the parameters mentioned
above.

One way to enhance processor utilization is to identify all subcubes that are available in
the system. Internal fragmentation occurs when the processor allocation scheme allocates
more number of processors than what is requested. External fragmentation [c] on the other
hand, occurs when a subcube large enough to house the incoming task may not be satisfied
since the processors are scattered as subcubes of lower dimension.

In our proposed scheme, the Veitch diagram [b] is used to represent the hypercube system
in an attempt to lessen memory overhead. Incomplete subcubes are maintained as a catalog of
colors. Each incomplete subcube asserts a color that is not the same as that of its neighbors.

Performance analysis reflects that the proposed scheme surpasses the existing strategies in
terms of cost incurred in allocation, deallocation and fragmentation at higher workloads.

The rest of the journal is organized as follows. Section II presents the preliminaries.
Section III describes our strategy. Section IV delineates the theoretical analysis and
performance comparison along with simulation results to contrast the proposed strategy with
others. Finally concluding remarks unfold in section V.

2. PRELIMINARIES

We consider a n variable Karnaugh map [b] to represent a n-cube system where individual
nodes or subcubes are represented by a n-bit string of ternary symbols from Σ={0,1,X} where
X denotes “don’t care” [a]. For example, in a 3-cube system (Figure 1), 0XX denotes the
nodes 000,001,010,011 and XXX denotes all the eight nodes.

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 59

000
001

011010

101100

110
111

000
001

011010

110
111

100 101

 Figure 1. 3-cube system.

DEFINITION 1. The Hamming Distance between two subcubes a = a1a2…an and b =
b1b2…bn; where ai ε Σ and bi ε Σ ∀ i ε [1, n]; can be defined as H(a,b) = ∑ =

n

i 1
h(ai, bi) = 1 if

ai ≠ bi and ai, bi ε {0, 1}, and 0 otherwise. For example, H(00x, 1xx) = 1 and H(1x0, x0x) = 0.

DEFINITION 2. The Exact Distance between the two subcubes a and b above, can be defined
as E(a, b) = ∑ =

n

i 1
e(ai, bi) where e(ai, bi) = 0 if ai = bi and 1 otherwise. For example,

E(0x1, 10x) = 3 whereas H(0x1, 10x) = 1.

DEFINITION 3. An Incomplete Subcube (ISC) [d] S can be defined as follows:

1) It consists of a group of disjoint subcubes {S1,S2,…, Sm}, (1≤m≤n) with dimensions
d1,d2,…,dm, respectively.

2) H (Si, Sj) =1 ∀ 1 ≤ i , j ≤ m, i ≠ j.
3) E (Si, Sj) = di – dj + 1 for all 1 ≤ i ≤ j ≤ m.
 di is the dimension and d= ∑ =

m

i 0
2di the size of ISC S. S1 is called the head of the

ICS S.

DEFINITION 4. The Karnaugh map (K-map) is a matrix of cells (squares). Each square
represents a minterm and in this journal, they refer to a processor in a hypercube. Combination
of adjacent cells represents a subcube. The address of the adjacent processors (cells) in the K-
map differs exactly by 1 bit [b].
EXAMPLE 1. (Figure 2 and Figure 3) Consider a 3-cube system. This is represented in K-map
as a 2 x 4 matrix. Processors X and Y are adjacent and thus differ by 1 bit.

 00 01 11 10

0 000 Y X 010
1 100 101 111 101

 Figure 2. Karnaugh map (K-map) representation.

Figure 3. 3-cube system showing adjacency.
X

Y

IADIS International Journal on Computer Science and Information Systems

 60

DEFINITION 5. Internal Fragmentation occurs in case of cubic allocation when the actual
required processors for the task are not in the form of 2k, where k is the task dimension.

DEFINITION 6. External Fragmentation occurs when a sufficient number of free processors
cannot form an incomplete subcube of the required size. The physical fragmentation problem
is similar to that of the memory fragmentation and may result from the sequence of incoming
and outgoing tasks or simply a “bad” allocation [c].

 10 11 10 11

 00 01
00 01
 Fragmentation Due To Bad Allocation No Fragmentation
 (a) (b)

Figure 4. Allocation in a 2-cube system.

EXAMPLE 2. Consider the 2-cube system shown in Figure 4. If an incoming task requesting
one node each is allocated as {00,11} (Figure 4a) instead of {00,01} (Figure 4b), a subsequent
request for a 2-node cannot be allocated.

Figure 5. Tetris Game.

DEFINITION 7. Graph Coloring
The Graph Coloring is a technique of assigning same color to all the free adjacent processors
in the incomplete free subcube. A different color is assigned to each incomplete subcube.

DEFINITION 8. Tetris Game
The AI game built-in is the Tetris Game (Figure 5). In this game, one must fit the falling
pieces to form full lines. One can rotate and translate the falling pieces. The game ends when
no more pieces can fall i.e. when incomplete lines reach the top of the board.

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 61

3. LITERATURE REVIEW

3.1 Free List Strategy

This strategy maintains a list of free subcubes available in the hypercube, with one list for a
dimension. The free list consists of n+1 independent lists, where the ith list corresponds to
dimension i, for i ≤ 0 ≤ n. The elements in the list are represented by their unique address (a
sequence of n ternary symbols). A n-cube is represented as a sequence of n “x”s initially.

An incoming request for dimension k gets allocated by assigning the first element in the
list of dimension k i.e., when there is a request for a k-cube, for k ≤ n, one of the nearest
higher dimension subcubes is decomposed from the most significant bit side for finding a k-
cube.

Although the allocation steps are simple, the strategy involves a quite complicated
deallocation process. Specifically the deallocation process has to do three steps. First, merge
the released subcube with any other subcube to form a bigger cube, or guarantee another
available cube of the same dimension. Next, it searches all subcubes of newly produced cube
and removes them from their corresponding lists. Finally, repeat the first two steps until
nothing can be done further.

3.2 Buddy Strategy

In this strategy, 2n allocation bits are used to keep track of the availability of the nodes in a
hypercube of dimension n. A value 0 (1) in the allocation bit indicates the availability
(unavailability) of the corresponding node. Typically, this strategy involves a logical
representation of hypercube in the form of a binary tree structure. In the binary tree structure,
every leaf node represents the processor and every intermediate node attributes the subcube of
some dimension of hypercube. The dimension of the subcube decreases as we choose a node
in the tree from root to leaf.

The allocation of requested subcube is done by a search made in the tree representation of
hypercube. The search initiates from the root and extends till the leaf node. So once a node in
the tree for requested dimension is found to be free, its allocation bit is set so as to declare
those set of processors to be in allocated state.

The deallocation procedure is simply the reverse of allocation procedure. In the same
fashion as that of allocation method, the tree is traversed and respective node’s allocated bit is
reset.

3.3 Gray Code Strategy

This strategy works in similar fashion to that of Buddy strategy. The difference lies in the way
the nomenclature is done to address the processors in the hypercube. The addressing is done
based on Gray Code (GC).

IADIS International Journal on Computer Science and Information Systems

 62

3.4 Modified Buddy Strategy

Modified Buddy Strategy eliminates the disadvantage of buddy strategy. Typically, it searches
one level further in the tree structure. In other words, if there is no free subcube of dimension,
this strategy tries to merge subcube of smaller dimension. This strategy works similar to that
of buddy strategy where 2n allocation bits are used to keep track of the availability of all
nodes. An integer α represented bits is regarded as free if (αm)0\1 and (αm)1\1 are free. For
example, an integer three in two bits, i.e., 11, is free if integers six and seven in 3 bits are free.
This notation implies the free subcubes of small dimension.

The allocation scheme is similar to that of Buddy strategy as long as there is a free subcube
of requested dimension. If one such does not exists, then unlike Buddy strategy, this strategy
traces one level down the tree structure and tries to find two free subcubes at that level. These
two subcubes together constitute the subcube of requested dimension. Such processes could be
carried out only if the hamming distance between the two subcubes chosen is 1. This process
extends until the request is processed or till the tree is traced till the leaf node.

The deallocation procedure is simply the reverse of allocation procedure. The tree is
traversed and respective node’s allocated bit is reset.

3.5 Tree Collapsing Strategy

Tree collapsing strategy can recognize and assign subcubes based on requested task size
instead of any arbitrary size. This strategy has much less complexity than others in generating
search space.

This strategy involves collapsing the binary tree representation of a hypercube
successively so that the nodes which form a subcube but are distant would be brought close to
each other for recognition. The strategy can be implemented efficiently by using right rotating
operations on the notations of the set of subcubes corresponding to the nodes at a certain level
of binary tree representations.

4. AI GAME PLAYING APPROACH FOR FAST
PROCESSORALLOCATION (AIPA)

AI Game Playing approach for Fast Processor Allocation (AIPA) is developed with an idea of
bringing about a full recognition among the 2n processors in the hypercube. It also has a better
efficiency than most of the current existing allocation policies. This strategy is applicable for
both cubic as well as non-cubic allocation [c]. The allocation algorithm uses a heuristic
function [g] to identify the apposite subcube to be allocated and the Tetris Game approach for
mapping the tasks onto the K-map. The allocation and deallocation algorithm uses the Graph
Coloring technique [f], which keeps track of all the incomplete subcubes with the help of a
color table. Each incomplete subcube has a unique color and each processor in that subcube
has the same color.

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 63

Algorithm: Allocation
Input : Requested No. of Processors, D.
Output : Allocates required number of cells in the K-map for the
 requested task.
Variables : Color Table, CT; Task, T; Color Table Pointer, CTptr;
 Penalty Factor of Ti, PFi; Task Shape, TSi 1 ≤ i ≤ v where v
 is the number of possible task shapes.
Method :
Begin
 For each CTptr in CT begin

 For I = 1 to v begin
 PFi = Trace (CTptr, CTptr, TSi)
 Choose (First_minval (PFi))
 Proc_allocated = 1 ∀ Allocated Processors

 Reset (Visited Flags)
 End for

 Coloring ()
 End for
End

The allocation algorithm is used to allocate a set of processors to the given task. It takes
care of both cubic as well as non-cubic tasks. The “Trace” function moves the Task Shape
TSi over the Karnaugh map K using the Tetris movement. The Task Shape TSi with minimum
Penalty Factor is chosen. If more than one task shape has the same value, then the one with a
minimum height along with an additional priority of minimum width on placement in the K-
map is chosen. The “Coloring” function assigns a color to all unallocated and uncolored
processors in the hypercube.

Algorithm: Deallocation
Input : Subcube, SCi, 1 ≤ i ≤ n where n is the number of
incomplete
 subcubes.
Output : Nil
Variables : Processor in Subcube SCi, PE; Address, A; Processor,
Pi;
 Width of Pi, Wi; Color Table CT; Height of Pi, Hi ; Color,
 C; Color stack CS;
Method :
Begin
 For each PE in SCi begin
 Alloc-Status (PE) = False

 End for
 For each C in CT begin

 Push (C, CS)
 End for
 Coloring ()
 For each Pi in hypercube begin

 Recompute Hi & Wi of Pi

 Hval (Pi)
 End for
End

IADIS International Journal on Computer Science and Information Systems

 64

In the deallocation algorithm, the height of each processor is the number of free continuous
processors, which are vertically above this processor. The width of each processor is the
number of free continuous processors, which are horizontally to the right of this processor.
The Color Table keeps track of the colors in the K-map. Once the processors are freed, the
“Coloring” function will be invoked.

4.1 Example

Assume at a given instance, tasks T1, T2, T3, T4, T5, T6, T7, T8 are allocated as shown in the
Figure 6. A Color Table has a pointer to the incomplete subcubes in this 6-cube system
represented by the two colors.

Figure 6. A 6-cube system. Figure 7. Possible task shapes for a task size of 3 (non-cubic).

Suppose now, if a task of size 3 is requested, all possible task shapes for these 3 processors
are generated. (Figure 7). Traversal through the free processors is shown in the Figure 6 by
dashed lines. Each task shape is made to fit during the traversal along the dashed lines. The
task shape that fits with a minimum penalty factor is then considered finally. In this case, upon
traversal, the minimum penalty factor is found to be 6 (2+2+2) at the address {X10101,
111101} (Figure 8). The deallocation algorithm involves releasing of processors by accepting
the address of any one of them. Now consider a K-map as follows. In this case five tasks have
already been allocated (Figure 9). The freed processors are assigned colors using graph-
coloring scheme. Since an incomplete subcube {0X1X} is not adjacent to the incomplete
subcube {110X, 1001}, each of them is assigned a different color.

 000 001 011 010 110 111 101 100
000 T1 3 3 T7 T7 3 4 3
001 T1 3 3 T7 T7 3 4 3
011 T1 3 4 2 T6 3 4 3
010 T1 3 4 3 T6 T6 2 T8
110 1 4 4 4 1 T5 2 T8
111 T2 3 4 3 T4 T5 2 T8
101 1 4 4 3 T4 2 3 T8
100 T3 3 4 3 T4 3 4 2

Color
Table
Blue
Pink

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 65

Figure 8. K-map representation consisting of 5 tasks. Figure 9. After allocation of task 9.

STEP 1: RESET THE ALLOCATION FLAG TO Nil
Upon the deallocation of task 4, the processor at 0100 is deallocated by setting its
allocation flag to nil.

STEP 2: COLORING
Reset all the deallocated processors, by setting allocated flag to nil and calling
coloring function, which colors the k-map. If there are two incomplete subcubes
then K-map on coloring has two colors. (Figure 10)

STEP 3: HEURISTIC FUNCTION VALUE UPDATES
 Compute the Heuristic Value of all the processors adjacent to the deallocated
processors.

 Updated Heuristic values are shown in the Figure 11.

Figure 10. After deallocation of task 4. Figure 11. Updated k-map.

 00 01 11 10
00 T5 T5 2 2
01 T4 T5 2 2
11 1 2 T3 T1
10 T2 1 T1 T1

 000 0
0
1

011 010 110 111 101 100

000 T1 3 3 T7 T7 3 4 3
001 T1 3 3 T7 T7 3 4 3
011 T1 3 4 2 T6 3 3 3
010 T1 3 4 3 T6 T6 T9 T8
110 1 4 4 4 1 T5 T9 T8
111 T2 3 4 3 T4 T5 T9 T8
101 1 4 4 3 T4 2 2 T8
100 T3 3 4 3 T4 3 4 2

Color
Table
Blue
Pink

Color
Table
Blue
Pink

 00 01 11 10
00 T5 T5 2 2
01 T5 2 2
11 1 2 T3 T1
10 T2 1 T1 T1

 00 01 11 10
00 T5 T5 2 2
01 2 T5 2 3
11 2 2 T3 T1
10 T2 1 T1 T1

Deallocated Task

IADIS International Journal on Computer Science and Information Systems

 66

5. PARALLEL AIPA

Parallel AI Game Playing approach for Fast Processor Allocation (Parallel AIPA) which is
developed with an idea of utilizing all the free processors in the hypercube can be extended to
the AIPA strategy, hence bringing down the time complexity to the O(n).
Algorithm: Allocation
Begin
 Flood the Veitch Diagram & Task Size to be allocated among
 all processors
 For each Processor in Parallel

 For each Task Shape for a task
 If task shape can be placed taking Processor Position
 as origin in the Veitch Diagram
 Compute the Penalty Factor
 End For
 Find the Minimum Penalty Factor among these task shapes
 If (Processor is a Client)
 Receive the Minimum Penalty Factor of all its
 Neighbours
 Find the Minimum among all these Penalty Factors
 Else If (Processor address is one's complement of Client
 address)
 Send its Minimum Penalty Factor to its Neighbours
 Else
 Receive the penalty factor for its children
 Send the Minimum Penalty Factor among them to its
 Parents
 End For
 Invoke the Coloring Mechanism
 Recompute the Heuristic Value
End

Algorithm: Deallocation
Begin
 Flood the Task to be deallocated
 Reset the Color Table
 For each Processor in Parallel
 If (Task is executed in the Processor)
 Allocation_flag = 0;

 End For
 Invoke the Coloring Mechanism
 Recompute the Heuristic Value
End

6. PARALLEL AIPA SIMULATION STRATEGY

The simulation process of the Parallel AIPA strategy is divided into four modules namely the
Input module, Scheduler module, Allocation strategy module and the Performance Analysis
module.

In the Input module, the various workloads consisting of a set of jobs, where a triplet of
job defines a job size, hold time and arrival time. The job size (n) is the number of processors

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 67

requested by a job to be allocated. This parameter is generated by using one of the four
distributions namely Normal, Uniform, Geometric and Hypergeometric. To model practical
systems more realistically, we assumed a Poisson job arrival process. A third parameter about
hypercube workloads concerns job hold time which is generated using the exponential
distribution. In the Scheduler module, the tasks are ordered in the ready queue for execution.
We considered a non-preemptive scheduler namely Scan Up. The output of the scheduler
module is the scheduled workload. The output of the scheduler module serves as an input to
the Allocation strategy module. In this module, processor requests of the scheduled workloads
are processed by the Parallel AIPA allocation and deallocation algorithms. In the Performance
Analysis module, the performance of the Parallel AIPA strategy is compared with various
other existing strategies in terms of system utilization, mean response time, allocation and
deallocation time complexities and memory overhead.

6.1 Process Execution

The process execution involves a set of stages. When the tasks arrive, the system is set in
ready state. A ready queue is maintained to track the tasks that have reported. Once the tasks
are subjected to processing, the system switches to execution state. An execution queue is
maintained to list those processes that are under processing. The above issue is described in
the following diagram (Figure 12).

Figure 12. States involved during the execution.

Once the task is serviced, the system calls the deallocator to free the processors involved.
Only then, will the next request be serviced upon calling the allocator.

6.2 Simulation Details

Simulation was carried out with the help of a Parallel JAVA [JOPI] simulator. The Java
object-passing interface (JOPI) provides an infrastructure for a parallel programming
environment in Java. It yields the necessary functionality to write object-passing parallel
programs. The main features of JOPI are: (1) It is suitable for clusters and distributed
heterogeneous systems, (2) It utilizes the object-oriented programming paradigm for parallel
programming thus simplifying the development process.

JOPI provides an MPI- like interface that can be used to exchange objects among
processes. Using objects to exchange information is advantageous because it facilitates
passing complex structures and enables the programmer to isolate the problem space from the

IADIS International Journal on Computer Science and Information Systems

 68

parallelization problem. Software agents were used to provide the necessary functionality on
the participating processors.

 . . .

 Workstation 1 Workstation 2 Workstation n

Figure 13. JOPI Run-Time Environment.

This system facilitates high performance computing in Java (parallel Java) for clusters or
heterogeneous systems. JOPI class library provides the parallel programming APIs. The
environment as shown in Figure 13 helps in automatic scheduling and deploying of parallel
JOPI processes on remote machines and JOPI client services provides users with environment
monitoring and control commands. Software agents were used to provide the necessary
functions that support the JOPI on clusters and distributed environments. Some of the benefits
of using agents are: portability, expandability, flexibility, security, and resources management.
In addition, the system is written completely in standard Java and can be used on any machine
that has a Java virtual machine (JVM).

7. PERFORMANCE COMPARISON

The proposed AIPA strategy has the allocation and the deallocation complexities of O(2n/2) &
O(2n) respectively and a space complexity of Ω(2n) for both allocation as well as deallocation
strategy. The Parallel AIPA strategy, however has the allocation and the deallocation

Agent
1

Agent
2

Agent
n

Thrd
 1

Thrd
 2

Thrd
 1

Thrd
3

Thrd
 1

Thrd
 2

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 69

complexities of O(n) & O(n) respectively. Hence the basic difference between these two
strategies lies here. The complexities of the two strategies are calculated with the help of [j].

PERFORMANCE COMPARISON

0

80

160

240

320

400

1 2 3 4 5 6 7 8 9 10

Dimension Of Hypercube

A
llo

ca
tio

n
C

os
t

Parallel AIPA
Modified Buddy
Gray Code
AIPA
FREE LIST

PERFORMANCE COMPARISON

0
40
80

120
160
200
240
280

1 2 3 4 5 6 7 8

Dimension Of Hypercube

De
al

lo
ca

io
n

C
os

t

Parallel AIPA
MSS
AIPA

Graph – 1 Graph - 2

According to the Graph-1, the allocation cost of the AIPA strategies is much lesser when
compared to most of the other existing strategies.

In the case of deallocation cost, our approach shows a better performance than the MSS [n]
as shown in Graph-2. In the above graph, few strategies are not shown, since their cost is very
high when compared to our proposed strategy.

Another major performance parameter to be dealt with is fragmentation. The main purpose
of Penalty Factor in our approach is to reduce the external fragmentation in the hypercube. On
the other hand, the non-cubic allocation [c] that is possible in our strategy eliminates the
internal fragmentation. The space complexity of this approach is Ω(2n) since the memory
required in the AIPA strategies is only with respect to the K-map.

7.1 Simulation Results

Our strategy is compared with others via simulation to verify the performance improvement.
Simulation results, however does not consider the strategies that has a greater complexity such
as Free List [h] and Modified Buddy [m]. Most of the assumptions used in this simulation are
the same as in [m].

Under the simulation conditions defined in [m], the performance of strategies are measured
in terms of Ts, E and J, which are averaged over 100 independent runs, and defined as follows
[g]:
J : Number of requests that can be satisfied in time interval T
U : Total utilization of processors by requests in time T

U = ∑
=

J

i it
iI

1

||
2

where |Ii| is the dimension of requested subcube and ti is the residence time until T of the
request Ii

IADIS International Journal on Computer Science and Information Systems

 70

E : Efficiency of the strategy E =
T

U
n2

Table 1. Efficiency of processor allocation strategies (E)

UNIFORM NORMAL
Dim BUDDY GRAY

CODE
HPA Parallel

AIPA
BUDDY GRAY

CODE
HPA Parallel

AIPA
5 82.42 82.84 83.17 90.12 79.85 80.25 80.92 87.23
6 81.17 81.14 81.46 89.67 79.66 79.70 79.81 87.12
7 80.49 80.94 81.43 89.03 78.89 78.79 79.33 86.66
8 82.25 82.14 82.36 91.23 79.83 79.75 80.49 8.82
9 82.28 82.31 82.78 91.84 78.14 78.02 78.63 86.13

10 82.88 83.09 83.18 92.27 77.40 77.33 77.82 85.42

Table 2. The allocation time (Ts)

UNIFORM NORMAL
Dim BUDDY GRAY

CODE
HPA Parallel

AIPA
BUDDY GRAY

CODE
HPA Parallel

AIPA
5 11.2 14.9 10.2 9.3 10.4 14.1 10.2 9.1
6 16.1 21.7 16.4 15.2 15.0 20.7 15.1 12.6
7 26.3 36.5 27.4 23.6 26.7 34.5 25.5 21.7
8 46.9 63.8 46.2 42.6 46.5 60.3 43.8 42.8
9 89.5 110.9 84.9 74.5 83.7 106.2 79.3 75.3

10 168.0 212.9 164.1 149.2 166.9 213.2 148.9 146.3

Table 1 shows that the Parallel AIPA strategy performs better than Buddy [m], Gray Code

[m] and HPA [g] strategies in terms of the efficiency. This result comes from the fact that
AIPA strategies can recognize more subcubes than the other strategies. It can be observed
from Table 2 that the allocation time of the Parallel AIPA strategy in time T is less than the
Buddy, Gray Code and HPA schemes.

8. FUTURE WORKS

On further analysis of AIPA Algorithms, it proved to be promising enough to be extended to
other two similar interconnection network topologies like 2-D Mesh & 2-D Toroid. The 2-D
Mesh topology as shown in the Figure 14 is a generalization of the hypercube, in which there
are more than two nodes along a dimension. Each interior processor has 4 adjacent processors
and processors along the edges have two to three adjacent processors. The veitch diagram can
be replaced by a grid structure (for mesh) whose dimensions are inherited from the 2D Mesh.
Each cell in the grid assembles a processor in the mesh.

AI GAME PLAYING APPROACH FOR FAST PROCESSOR ALLOCATION IN HYPERCUBE
SYSTEMS USING VEITCH DIAGRAM

 71

Figure 14. 2-D Mesh. Figure 15. 2-D Toroid.

The 2-D Toroid, on the other hand is merely the topology achieved by wrapping the ends

of the mesh. The 2-D Toroid resembles the veitch diagram in its structure as shown in the
Figure 15 but varies in its dimension from the conventional toroid. The proposed AIPA
strategies can easily be applied to these topologies by redefining the dimensions of the veitch
diagram to the corresponding topology. Also the strategies can now be applied for the
allocation and deallocation process in both these topologies. However, a further study is
required for these topologies in terms of efficiency and performance.

9. CONCLUSION

High performance on a multiprocessor system is achieved by using an efficient processor
allocation scheme. To maximize the processor utilization and minimize the time between the
starting of a task and its completion, processor allocation and deallocation strategies have
become important topics. In this journal, a processor allocation scheme based on the AIPA
policy has been introduced for the hypercube computers.

Using this policy, a requested set of processors (both cubic and non-cubic) is allocated to
the Veitch Diagram [b] that represents the hypercube system by representing the tasks in the
form of Tetris Game blocks and trying to fit these blocks into the Diagram. Quick recognition
of the incomplete subcubes is accomplished by using Graph Coloring technique [f]. Each
incomplete subcube had a unique color. Since our proposed strategy also deals with non-cubic
allocation [c], the problem of internal fragmentation is eliminated.

The performance analysis implies that the proposed AIPA policies are better than the
existing allocation algorithms on an overall basis. Furthermore, by incorporating temporal
parallelism in our strategy, the time complexity is improvised. The simulation results
corroborate the statement above, by showing that our proposed strategy gives a better
processor utilization compared to the previous bottom-up schemes, such as the Buddy strategy
[m], GC strategy [m] and HPA strategy [g]. Moreover, the AIPA strategy has a less search
time than the other existing strategies.

IADIS International Journal on Computer Science and Information Systems

 72

REFERENCES

[a] Michael J. Quinn, 1994. Parallel Computing – Theory and Practice. 2nd ed. Singapore: McGraw-
Hill.

[b] M.Morris Mano, 2001. Digital Logic and Computer Design. Twenty Fourth Reprint Prentice-Hall,
Inc., Englewood Cliffs, N.J., USA.

[c] Debendra Das Sharma and Dhiraj K. Pradhan, 1995. Processor Allocation in Hypercube
Multicomputers: Fast and Efficient Strategies for Cubic and Non-cubic Allocation. In IEEE Trans. n
Parallel and Distributed Systems, vol. 6, No.10.

[d] P.O.-Jen and Nian-Feng Tzeng,1992. Fast Recognition-Complete Processor Allocation Strategy for
Hypercube computers. In IEEE Trans. on Computers, vol. 41, No.4.

[e] Suresh Rai. et al, 1995. Processor Allocation in Hypercube Multiprocessors. In IEEE Trans. on
Parallel and Distributed Systems, vol. 6, No.6.

[f] Narsingh Deo. Graph Theory with Applications to Engineering and Computer Science. Fifth Reprint
Prentice-Hall, Inc.

[g] S.Y.Yoon. et al, 1991. Heuristic Processor Allocation Strategy in Hypercube Systems. In IEEE
Trans. on Parallel and Distributed Systems.

[h] Jong Kim. et al, 1991. A Top-Down Processor Allocation Scheme for Hypercube Computers. In
IEEE Trans. On Parallel and Distributed Systems, vol. 2, No.1.

[i] Y.Saad and M.H Schultz, 1988. Topological properties of Hypercubes. In IEEE Trans. on Computers,
vol 37, pp. 867-872.

[j] Thomas H.Cormen. et al, 2002. Introduction to Algorithms, 2nd Edition, Prentice Hall of India.
[k] Moonsoo Kang. et al, 2003. Isomorphic strategy for processor allocation in k-ary n-cube systems. In

IEEE Trans. On Computers, Vol. 52, Issue: 5, pp. 645 – 657.
[l] B. Bose, A.Al-Dhelaan, 1989. A new strategy for processor allocation in an N-cube multiprocessor.

Proc. Int’l Phoenix Conf. Computing Comm., pp.114-118.
[m] M.S. Chen and K.G. Shin, 1987. Processor allocation in an N-cube multiprocessor using Gray codes.

In IEEE Trans. on Computers, Vol. C-36, pp.1396-1407.
[n] S. Dutt and J.P. Hayes, 1991. Subcube allocation in hypercube computers. In IEEE Trans. on

Computers, Vol. C-40, pp.341-351.
[o] Srinivasan T. et al, 2004. Tetris-Mapping for Processor Allocation in Hypercube Computers using

Veitch Diagram (TMPA). Proceedings of Asia Pacific Conference On Parallel & Distributed
Computing Technologies - ObCom 2004. Vellore, India, pp. 655-672.

[p] Srinivasan T. et al, 2005. AI Game Playing Approach for Fast Processor Allocation in Hypercube
Systems using Veitch diagram. IADIS International Conference on Applied Computing 2005.
Algarve, Portugal, pp. 65-72.

[q] Srinivasan T. et al, 2005. Parallel AI Game Playing Approach for Faster Processor Allocation in
Hypercube Systems using Veitch diagram. 11th IEEE International Conference on Parallel and
Distributed Systems - ICPADS 2005, IEEE Computer Society. Fukuoka, Japan, pp. 536-542.

