
IADIS International Journal on Computer Science and Information Systems
Vol. 1, No. 1, pp. 30-41
ISSN: 1646-3692

 30

A MODELING FRAMEWORK FOR COMPLEX
BEHAVIOR MODELING AND INTEGRATION

Jean-Marc Perronne
 MIPS, Université de Haute Alsace

12 rue des frères Lumière, 68093 Mulhouse, France

Alban Rasse

MIPS, Université de Haute Alsace
12 rue des frères Lumière, 68093 Mulhouse, France

Laurent Thiry
 MIPS, Université de Haute Alsace

12 rue des frères Lumière, 68093 Mulhouse, France

Bernard Thirion

MIPS, Université de Haute Alsace
12 rue des frères Lumière, 68093 Mulhouse, France

ABSTRACT

The design of the control software for complex systems is a difficult task. It requires the modeling, the
simulation, the integration and the adaptation of a multitude of interconnected entities and behaviors. In
this context, the present paper describes a modeling framework. It proposes to objectify the behaviors
which leads to a two-level modeling process based on three concepts: resources - software images of the
controlled system - behaviors applied to these resources, and meta-behaviors, - i.e. means for behavior
integration and adaptation. To complete the proposed modeling framework, a coherent model-based
approach supported by model-checking tools, that ensures the development of validated applications, is
considered. Finally, to illustrate the elements mentioned, this paper uses the control software of a
walking robot as a running example.

KEYWORDS

Modeling Framework, Behaviors Modeling, Control Software, UML, Model Transformation, Validation

1. INTRODUCTION

The design of the control software for complex systems is a difficult task (Sanz R. et al, 2001).
In particular, it requires means - i.e. concepts, notations and guides - for the integration and

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

31

adaptation of a number of local behaviors within the framework of global control. In this
context, the present paper proposes a modeling framework which explains how to design
complex software systems which are controllers. The basic concept proposed by this paper is
that of Behavioral Objects, which consists in reifying the behaviors of a subsystem. This
founding principle opens an important field of investigation of complex systems. In particular,
it helps to model all the elements considered (subsystems, control laws and interactions) in a
uniform way with objects (Thiry L., 2002). The notion of behavioral objects leads to an
analysis guided by a two-level architecture that sets up three kinds of entities: resources,
behaviors and meta-behaviors. The first conceptual level includes entities which model
resources. The resources help to model the structure of the controlled system and to specify
the available services to make this structure evolve. The second conceptual level includes
entities which model behaviors and allow the control of the previous elements. A behavioral
object can then be considered as a resource for behavioral objects of a higher order. These
behavioral objects, called meta-behaviors, help to integrate, adapt and coordinate other
behaviors; they represent the third concept of the architecture.

2. RUNNING EXAMPLE

The system used to illustrate the present approach (Figure 1) is an omnidirectional hexapod
robot (Thirion B., Thiry L., 2002).

Figure 1. Hexapod Robot.

This mobile platform requires an efficient appropriate control architecture for the
integration of a number of coordinated behaviors. Only the locomotion behavior will be
considered here. A leg moves in a cyclic way between two positions AEP (anterior extreme
position) and PEP (posterior extreme position). A leg is in retraction when it rests on the
ground and pushes the platform forward. It is in protraction when it resumes its AEP. The
control architecture is based on decentralized control; the local behaviors obtained with local
controllers (LC) are applied to a leg (L) and a global controller (GC) coordinates the local
behaviors. Each local controller can be decomposed into three simpler controllers: a retraction
controller which allows the platform to move, a protraction controller which determines where

:LC

:GC

:LC
:RC

:PC

:LC
:RC

:PC
:LC

:RC

:PC

:LC
:RC

:PC

:RC :PC

:LC

:RC :PC

L1

L6

L2

L5

L3

L4

AEP

PEP

protraction

retraction

Basic cycle of a leg

GC : Global Controller
LC : Local Controller

PC : Protraction Controller (displacement)
RC : Retraction Controller (pushing)

IADIS International Journal on Computer Science and Information Systems

32

and how to reposition a leg and a controller which coordinates the previous two controllers.
The proposed modeling framework helps to tackle the complexity of such a system.

3. BEHAVIORAL OBJECTS

The reification of behaviors (Beaudouin-Lafon M., Mackay W.E., 2000), also called
objectification, helps to consider a behavior as an object; as such, it can be architectured. A
behavior can be defined as a series of transformations applied to the state of a system; the state
corresponds to an observable configuration of the system. This reification has numerous
advantages. As the behavior is an object, it can also receive messages and be controlled by
objects of a higher level; this property is used by meta-behaviors to integrate or adapt different
behaviors.

This definition of behavioral objects leads to modeling at a two-level of analysis, Figure
2a. The first level includes all the resources evolving in any state space; resources typically
model physical entities. The second level corresponds to the behavioral objects whose role is
to control the resources in their state space. In this schema, the laws, the evolution rules or the
constraints are systematically separated from the objects governed by these laws (For instance,
in Figure 2b, LegBehavior and Leg).

Figure 2. Behavior-Resource conceptual model

3.1 Organization of behavioral objects

The advantage of the proposed concept is to allow the use of the founding principles of object-
oriented modeling (Booch G., 1994) for the description and the organization of the behavior
space. The relations of classification and aggregation in particular prove important as they
help to structure this space and allow the easier synthesis of flexible control software. Hence a
network of behavioral objects (Figure 1) which provide a structure for the space of behaviors.
Figure 2b proposes an extract of the organization of the behaviors necessary for the control of
the legged robot. It notably shows the four main behavior/controller classes used to control
this complex system:

- The global controller sets and controls the global motion of the platform.
- The local controller controls the leg motion according to the retraction and protraction

phases.
- The retraction controller controls the leg at rest and so contributes to the global

motion.

a) Conceptual model

Level of resources (1)

Level of behaviors (2)

b) Example

Behavior

GlobalController LegBehavior
6

Leg
n

Behavior

Resource

LocalController

Retraction

Protraction

*

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

33

- The protraction controller brings the upheld leg into the position where it can
contribute again to the motion of the platform.

The local leg-behavior results from the aggregation of a local controller, a retraction
controller and a protraction controller. The global walking behavior is then obtained through
the combination of a global controller with six local controllers.

3.2 Meta-behaviors

The previous part has explained how to organize local behaviors that are necessary for the
control of a complex system. This part now presents the composition model for the integration
of these local behaviors into the context of more global control. It starts from the observation
that a behavior is an object; in this sense, it can be considered as a resource and controlled by
higher order behaviors (meta-behaviors) (Figure 3).

Figure 3. Meta-behavior

Behavioral objects are used to define the dynamic (i.e. control laws) which specifies how
the internal state of a resource evolves within a given running mode; meta-behaviors are used
to define the metadynamic which describes how the behaviors themselves evolve. A meta-
behavior is a behavioral object which activates, inhibits, organizes, combines or adapts other
behaviors. Two categories of meta-behaviors are currently identified: combinators and
adapters.

3.2.1 Combinators
Combinators are particular behavioral objects in the sense that they can only be applied to
behaviors. The most conventional combinators are given by sequential, parallel, repetitive or
conditional behaviors, as shown in Figure 4.

Figure 4. Combinators for the integration of behavioral objects

Behavior

Level of resources Resource

Meta-Behavior

resource
Level of behaviors

n behavior

Generic framework

Observation Retraction Protraction Specific part AtAEP AtPEP

Operator Composite

components

Atom

Behavior

Sequence ParallelRepetitionConditionalBehavior BasicBehaviorCondition

IADIS International Journal on Computer Science and Information Systems

34

Figure 4 proposes a family of combinators that can be used for the integration of
behavioral objects. These fall into five categories:

- Basic behaviors which represent “behavior atoms” to be combined for more complex
activities. Retraction and Protraction belong to this category. In general, a basic
behavior is directly applied to a resource.

- Repetition behaviors are currently used to define cyclic activities. This is the case of
controls which must run constantly. For example, the locomotion behavior consists in
repeating two behaviors – protraction and retraction – successively.

- Conditional behaviors help to add an activation condition (or guard) to a behavior. For
example, it must be possible to suspend the retraction behavior when the leg stretch
degree reaches its maximum threshold.

- Sequence behaviors allow the sequential combination of behaviors following the rule:
“if a behavior is completed, then activate the next behavior”. For example, the
protraction behavior of a leg follows the retraction behavior (Figure 1).

- Parallel behaviors allow concurrent behaviors to be performed simultaneously. They
play an important part in the control of complex systems where several activities must
be carried out in parallel. For example, the global motion of the platform is obtained
by combining, in parallel, the motion of the six legs.

3.2.2 Adapters
The concept of meta-behavior can be generalized for the adaptation or reconfiguration of
behavioral objects. The modeling framework is refined so that a behavior can
adapt/reconfigure another behavior. A behavioral object can be decomposed into two parts: a
constant part and a variable or adaptable part which is used as a resource by an “adapter”
meta-behavior (Figure 5a). It must be noted that, if need be, the adaptable part can be shared
by several behaviors which would then benefit from any adaptation action.

Figure 5. Meta-behavior adapter

An illustration of this principle is the management of the robot’s motion. A global
controller adapts the global speed of the platform according to the performance of the six local
controllers (Figure 5b). The present case is in fact rather complex as it sets up a continuous
process (global motion) which adapts the performance of six hybrid processes (leg behavior).

- The global controller uses the stretch degree provided by the leg controllers to adapt
the global speed of the platform. Here, speed is the adaptable part of the six local
controllers.

- The six leg controllers use the global speed of the platform adapted by the global
controller in order to evaluate the control parameters of their legs.

This example has illustrated the case where a process of a higher level adapts a parametric
process at a lower level.

Behavior

Adaptable partResource

Adapter
(Meta-behavior)

LocalController

Speed
Leg

GlobalController
6

«uses»

Stretch

1

1

1

6 «adapts»

«adapts»

«uses»

1
1 1

a) Conceptual model b) Example

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

35

4. BEHAVIORS AND VALIDATION

As it separates behavioral objects from resource objects, the proposed modeling framework
helps to make the design process of control software easier. Despite its advantage in terms of
intelligibility, the occurrence of emerging behaviors makes reliable software production
complicated. It then becomes necessary to check and validate the software systems modeled in
this way. A series of approaches (Magee J., Kramer J., 1999), (Mikk E., et al, 1998), (Apvrille
P., et al, 2001) try to introduce more formal aspects and semantics into UML (OMG, 2003)
specification of systems, to allow their validation. Since Object Oriented concepts and model
checking techniques have matured, it is becoming possible to establish a design approach
based on model driven engineering. The approach depends on the composition and
transformation of models to make checking of progress and safety properties as well as
reliable implementation possible (Figure 6).

Figure 6. Conceptual representation of the approach proposed

The approach consists of five parts (Rasse A., et al, 2004):
- A structural aspect based on the behavior model (as described above).
- A model of the dynamic aspect. In UML, Statecharts are commonly used to model the

reactive behavior of models. However, the organization obtained through structural
modeling allows the use of simpler and precise formalism. Here, finite state machines
present an appropriate notation to capture, formally the behaviors associated with each
behavioral class.

- A particular configuration of the system in order to obtain the specific behaviors
required.

- A validation of the behavioral model. The finite state machines are translated into a
process algebra called Finite State Processes (FSP) (Magee J., Kramer J., 1999). This
leads to a validation model which can be exploited with the Labeled Transition
System Analyzer (LTSA) model checking tool (Magee J., Kramer J., 1999).

- Implementation which agrees with the specifications. To this aim, a translation of the
validated model based on the recurring use of design patterns can be used to ensure
reliable implementation.

Analysis model
- UML, FSM -

 :A

:B
 :C

Model Checker
- LTSA -

Checking

Specific platform

Execution

PROCESS = PROCESS0,
PROCESS0= (action PROCESSn),
…
PROCESSn = action PROCESS0).

Validation model
- FSP -

Transformation Transformation

Coherent
approach

Implementation model
- State Design Pattern -

public static void main (String arg [])
{
 …
 }

IADIS International Journal on Computer Science and Information Systems

36

The next sections partially describe the proposed approach. In a first time, the sections 4.1
and 4.2 complete the analysis model by describing the behavioral and the configuration
aspects which are associated with the structure. In a second time, the section 4.3 and 4.4
describe the translation from this analysis model into the validation model and how this
translation is achieved via Transformation Model techniques.

4.1 Behavioral aspects

As described above, the structural aspects have allowed to isolate and abstract - in behavioral
classes - the dynamic aspects of each resource. To specify these dynamic aspects, each
behavioral class is associated with a Finite State Machine (FSM). The FSMs describe the
behavior of each resource in the form of event/state sequences. This choice has been
motivated because this simple formalism which has formal semantics is usually used for the
behavioral specification and can be easily integrated into a UML design. In accordance with
the supervisory control architecture (Ramadge P.J., Wonham W., 1988), higher order
behaviors (meta-behaviors) coordinate local behaviors to obtain the global behavior. This
coordination is possible by a mechanism of sending/receiving events - concept of
synchronization -. So, according to the events synchronized, the global behavior controls local
behaviors in their state-space allowed. Figure 7 shows the discrete behaviors of the walking
robot, associated with each controller - organized as shown in figure 2 - and one example of
synchronization. The global controller is not the goal of this example, so its specifications
(figure 7) will not be detailed here.

Figure 7. FSM associated with behavioral classes and hierarchy of behavior

Structural model Behavioral model

Synchronization
of the protraction event

Global Controller
protraction

 Y

 protraction
WAIT_PROTRACTION

PROTRACTION RETRACTION

WAIT_RETRACTION

 pep

 aep retraction

 aep

INACTIVE

ACTIVE

 protraction

 pep

INACTIVE

ACTIVE

 retraction

Local Controller

Protraction

Retraction

X

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

37

4.2 Configuration aspects
The dynamic and structural aspects which have been described so far, propose a family of
potential configurations of a system in terms of behavior, class and interaction. However,
software design usually requires the use of many instances of the same abstraction.
Consequently, to describe a system, it is necessary to know the topology of these instances. In
UML, this information is specified with an object diagram (figure 1). This representation
refines the structural aspects by specifying the links between the instances and refines the
behavioral aspects by specifying the particular messages which are exchanged through these
links (concept of synchronization). Thus specified, the configuration helps to understand
complex systems and allows the design of a particular application whose behavior must meet
the requirements.

The analysis model is now fully specified. However, this approach doesn’t guarantee the
obtaining of a suitable system. So, to make sure the system global behavior is in accordance
with the requirements, the FSMs which are associated with the behavioral classes must be
validated. To do so, the analysis model must be translated into the validation model to be
checked by an existing model checker. As will be seen in the next sections, FSMs find an
equivalence with formal languages used for the validation. Consequently, their use makes the
translation easier and so, simplifies the proposed approach.

4.3 Validation
The aim of all validation tools is to make software design reliable and to ensure designers that
their specifications actually correspond to the requirements (Bérard B., et al, 2001). Among
the checking methods, two major categories can be distinguished: simulation and model
checking. These methods are not competitive but complementary. It is sensible to associate
them within UML design, so as to bring an effective answer to the numerous checking
problems. However, model checking methods require the use of formal methods which
provide a mathematical context for the rigorous description of some aspects of software
systems. In the present approach, the validation model will be expressed using a process
algebra notation called Finite State Processes or FSP (Magee J., Kramer J., 1999) based on
the semantics of the Labeled Transition System (LTS). This formalism which is commonly
used in the field of checking provides a clear and non ambiguous means to describe and
analyze most aspects of finite state process systems (Arnold A., 1994). It allows the use of the
LTSA model checker (Magee J., Kramer J., 1999) in which a system is structured by a set of
elementary components whose behavior is described in FSP. So, the present approach
proposes to collect the behaviors specified with FSM in the analysis model, then to translate
them into FSP. The FSM formalism is also in accordance with the LTS’s semantics;
consequently, as shown in table 1, they immediately find a correspondence with FSP.

Table 1. Mapping from the analysis model concepts to the validation model

Analysis model Validation model
FSM state local process: P=(a P).
FSM event Action prefix: a
classes processes
instances process labeling: instance_name : type_name
configuration parallel composition: instance_1 || instance_2
synchronization relabeling operator: a / b

IADIS International Journal on Computer Science and Information Systems

38

Figure 8 represents the FSP translation of the behavior of the local controller (LC) class
graphically described by its Finite State Machine in figure 7

Figure 8. Behavioral description of a LC component in FSP

The global behavior is obtained from all the instances of these elementary components
(LC, GC, RC and PC) and all their interactions within a particular configuration (figure 1). In
FSP, a process labeling (instance: Component) provides multiple instances of elementary
components, which are in accordance with the instances of the behavioral classes of the
analysis model. So, a set of six local controllers (lci), six protraction controller (pci), six
retraction controller (rci) and one global controller (gc) processes are thus created. The
ROBOT global behavior (figure 9) is expressed as a parallel composition (||) of these
instances, which are executed concurrently and synchronized on their shared action using the
FSP relabeling operator (/).

Figure 9. Global behavior in FSP

This ROBOT behavioral model is validated by the LTSA model checker. This tool allows
the interactive simulation of the different possible execution scenarios of the model specified.
This interactive exploration allows the designer to improve his confidence in the coherence
between the expected behaviors and the models which describe them. To ensure robustness
and flexibility in locomotion, this first non exhaustive type of validation can be complemented
by a search for progress or safety properties violation. According to the progress rules, all the
legs must continue to move, whatever the possible execution traces of the system. According
to the safety rules, all the legs must not be raised at the same time. In the validation model
proposed, great attention will be given to the progress properties which asserts that "something
good eventually happens". The progress property previously stated consists in checking the
occurrence of the protraction action for each local controller and their infinitely repeated
execution. In LTSA, the progress properties are expressed with the progress key word (figure
10).

Figure 10. Progress properties in FSP

If this property is violated by the model, the analyzer produces the sequence of actions that
leads to the violation. So, in accordance with the result obtained, the designer can modify his
analysis model, until the obtaining of a suitable control software. This approach allows the
coherent translation between an analysis model and a validation model and thus ensures the
validation of the controller behaviors.

progress Cycle_lc2 = {lc2.protraction }.
…

progress Cycle_lc6 = {lc6.protraction }.

LC = WAIT_PROTRACTION,
WAIT_PROTRACTION = (protraction PROTRACTION),
PROTRACTION = (aep WAIT_RETRACTION),
WAIT_RETRACTION = (retraction RETRACTION),
RETRACTION = (pep WAIT_PROTRACTION).

||ROBOT = (lc1:LC || lc2:LC || pc1:PC || ... || gc:GC) / {gc.protraction_lc1 / lc1.protraction,.....}.

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

39

4.4 Model Transformation

The model transformations that were intended to produce the validation model in an
automated way were prototyped using the MetaEdit tool (MetaEdit, 2005). Its use implies two
modeling stages:

- The first stage, at the meta-level, consists:
o first in describing the entities of the specification meta-model with the meta-

meta-model of MetaEdit called GOPRR (Graph, Object, Property, Relation,
and Role).

o then in writing the transformation rules in the form of script (figure 11.b),
rules which will have to be applied to the instances of this meta-model in
order to obtain the corresponding target models.

- The second stage, at the model level, consists:
o first in specifying the specification model (figure 11.a) graphically, in

accordance with its meta model.
o then in executing the transformation rules on the entities of this model in

order to obtain the entities of the target model (FSP code) (figure 11.c).

Figure 11. a) Modeling of the specification model in MetaEdit, b) Transformation rules and c) FSP code

b)

« target »

Behavior

GlobalController LegBehavior

6

Leg

Retraction

Protraction

LocalController

 aep
INACTIVE

ACTIVE

protraction

 protraction
WAIT_PROTRACTION

PROTRACTIONRETRACTION

WAIT RETRACTI

pep

 retraction

pep
INACTIVE

ACTIVE

retraction

Report ‘AnalysisToValidation’

foreach.Class {
if : Stereotype = ‘behavior
then
id; ‘ = ‘;

do.FSM {
dowhile > Inside.State {

 if: Initial
 then id; ‘,’;
 endif
 }
 newline;

do.FSM {
 dowhile > Inside.State {
 do {
 :Name; ‘ = (‘;

 dowhile ~From >

AnalysisToValidation Object
Relationship
Role
Templates

Retraction = Inactive,
Inactive = (retraction -> Active),
Active = (aep -> Inactive).

LocalController = Retraction,
Wait_Protraction = (protraction -> Protraction),
Protraction = (aep -> Wait_Retraction),
Wait_Retraction = (retraction -> Retraction),
Retraction = (pep -> Wait_Protraction).

||ROBOT = (lc1:LocalController || lc2:LocalControler || lc3:
LocalController|| p1:Protraction || p2:Protraction ||p3:Protraction

a) c) b)

IADIS International Journal on Computer Science and Information Systems

40

The FSP code obtained in this way can directly be analysed with the LTSA tool to ensure
that the specification model satisfies the designer's requirements.

As suggested, the aim of the present approach is to produce an executable code for the
implementation of validated control software. however even if the joint use of object-oriented
methods, checking tools and model transformation techniques makes software development
easier and more reliable, it does not guarantee that the implementation conforms with the
validation. That is why, the approach presented in this paper is part of a global software
development (figure 1) in which the use of an runtime platform – also in conformity with LTS
semantic – helps to reduce the semantic gap between the models and thus allows the easier
generation of a code in accordance with the specification and validation models.

So, this approach allows the creation of a coherent software development cycle that
integrates specification, validation and implementation phases.

5. CONCLUSION

This paper has presented a modeling framework to define control software for complex
systems using the example of a controlled hexapod robot. It is based on an architecture model
where objects are organized according to two conceptual levels – one for resources and one
for behaviors. This proposal reduces the apparent complexity of a system by separating the
nature of the entities it is composed from their dynamic. The object-oriented concepts then
allow the identification and organization of the different behavior classes. Moreover, some
behavioral objects can be considered as resources for behaviors of a higher order (meta-
behaviors) so that they can be integrated, combined or adapted. The same notation may then
be used to represent the static, dynamic and metadynamic aspects of a system. Finally, the
necessity to consider a rigorous process for software design which integrates the different
design phases of modeling has been highlighted. To complete the proposed modeling
framework, a coherent model-based approach supported by model-checking tools that ensures
the development of validated applications is considered. Moreover, an step of implementation,
based on the recurring use of design patterns, completes this work and allows an
implementation in accordance with the validation (Rasse A., et al, 2004).

REFERENCES

Apvrille P. et al, 2001. A new UML Profile for Real-time System Formal Design and Validation,
Proceeding of 4th International Conference on the Unified Modeling Language, Toronto, Canada,
pp. 287-301.

Arnold A., 1994. Finite Transition System, Prentice Hall, Prentice Hall.
Beaudouin-Lafon M. and Mackay W.E., 2000. Reification, polymorphism and reuse: three principles for

designing visual interface, Proceedings of the working conference on Advanced visual interfaces,
Palermo, Italy, pp. 102-109.

Bérard B. et al, 2001. Systems and Software Verification. Model-Checking Techniques and Tools,
Springer.

Booch G., 1994. Object-Oriented Analysis and Design with Applications, Addison-Wesley, Reading,
MA, USA.

A MODELING FRAMEWORK FOR COMPLEX BEHAVIOR MODELING AND INTEGRATION

41

MetaEdit, 2005, Domain Specific Modeling with MetaEdit+, http://www.metacase.com/
Magee J. and Kramer J., 1999. Concurrency. State Models & Java Programs. John Wiley & Sons,

Chichester, UK.
Mikk E. et al, 1998. Implementing statecharts in PROMELA/SPIN. Proceedings of 2nd IEEE workshop

on Industrial-Strength Formal Specification Techniques, Boca Raton, FL, USA, pp. 90-101.
OMG, 2003. Unified Modeling Language Specification, Version 1.5,

http://www.omg.org/docs/formal/03-03-01.pdf.
Ramadge P.J. and Wonham W., 1988. The control of Discrete Event Systems. Proceeding of the IEEE,

Vol. 77, No.1, pp. 81-98.
Rasse A. et al, 2004. Design And Validation Of Object-Oriented Software Via Model Integration.

Proceedings of EuroSim, Special Session: Modeling and Simulation of Object based Software
Systems, Paris, France, pp. 2-7.

Sanz R. et al, 2001. Software for Complex Controllers. In: Karl Astrom, P. Albertos, M. Blanke, A.
Isidori, W. Schaufelberger, R. Sanz, ed., Control Of Complex Systems, Springer-Verlag, London, pp.
143-164.

Thirion B. and Thiry L., 2002. Concurrent Programming for the Control of Hexapod Walking, In ACM
Ada Letters, Vol 21, No 1 , pp. 17-28.

Thiry L., 2002. Modèles, métamodèles et Objets Comportementaux pour les systèmes dynamiques
complexes, Ph.D. Thesis,Université de Haute Alsace, France.

