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ABSTRACT 

The design of the control software for complex systems is a difficult task. It requires the modeling, the 
simulation, the integration and the adaptation of a multitude of interconnected entities and behaviors. In 
this context, the present paper describes a modeling framework. It proposes to objectify the behaviors 
which leads to a two-level modeling process based on three concepts: resources - software images of the 
controlled system - behaviors applied to these resources, and meta-behaviors, - i.e. means for behavior 
integration and adaptation. To complete the proposed modeling framework, a coherent model-based 
approach supported by model-checking tools, that ensures the development of validated applications, is 
considered. Finally, to illustrate the elements mentioned, this paper uses the control software of a 
walking robot as a running example. 
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1. INTRODUCTION 

The design of the control software for complex systems is a difficult task (Sanz R. et al, 2001). 
In particular, it requires means - i.e. concepts, notations and guides - for the integration and 
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adaptation of a number of local behaviors within the framework of global control. In this 
context, the present paper proposes a modeling framework which explains how to design 
complex software systems which are controllers. The basic concept proposed by this paper is 
that of Behavioral Objects, which consists in reifying the behaviors of a subsystem. This 
founding principle opens an important field of investigation of complex systems. In particular, 
it helps to model all the elements considered (subsystems, control laws and interactions) in a 
uniform way with objects (Thiry L., 2002). The notion of behavioral objects leads to an 
analysis guided by a two-level architecture that sets up three kinds of entities: resources, 
behaviors and meta-behaviors. The first conceptual level includes entities which model 
resources. The resources help to model the structure of the controlled system and to specify 
the available services to make this structure evolve. The second conceptual level includes 
entities which model behaviors and allow the control of the previous elements. A behavioral 
object can then be considered as a resource for behavioral objects of a higher order. These 
behavioral objects, called meta-behaviors, help to integrate, adapt and coordinate other 
behaviors; they represent the third concept of the architecture. 

2. RUNNING EXAMPLE 

The system used to illustrate the present approach (Figure 1) is an omnidirectional hexapod 
robot (Thirion B., Thiry L., 2002). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Hexapod Robot. 

This mobile platform requires an efficient appropriate control architecture for the 
integration of a number of coordinated behaviors. Only the locomotion behavior will be 
considered here. A leg moves in a cyclic way between two positions AEP (anterior extreme 
position) and PEP (posterior extreme position). A leg is in retraction when it rests on the 
ground and pushes the platform forward. It is in protraction when it resumes its AEP. The 
control architecture is based on decentralized control; the local behaviors obtained with local 
controllers (LC) are applied to a leg (L) and a global controller (GC) coordinates the local 
behaviors. Each local controller can be decomposed into three simpler controllers: a retraction 
controller which allows the platform to move, a protraction controller which determines where 
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and how to reposition a leg and a controller which coordinates the previous two controllers. 
The proposed modeling framework helps to tackle the complexity of such a system. 

3. BEHAVIORAL OBJECTS 

The reification of behaviors (Beaudouin-Lafon M., Mackay W.E., 2000), also called 
objectification, helps to consider a behavior as an object; as such, it can be architectured. A 
behavior can be defined as a series of transformations applied to the state of a system; the state 
corresponds to an observable configuration of the system. This reification has numerous 
advantages. As the behavior is an object, it can also receive messages and be controlled by 
objects of a higher level; this property is used by meta-behaviors to integrate or adapt different 
behaviors.  

This definition of behavioral objects leads to modeling at a two-level of analysis, Figure 
2a. The first level includes all the resources evolving in any state space; resources typically 
model physical entities. The second level corresponds to the behavioral objects whose role is 
to control the resources in their state space. In this schema, the laws, the evolution rules or the 
constraints are systematically separated from the objects governed by these laws (For instance, 
in Figure 2b, LegBehavior and Leg).  

 
 
 
 
 
 
 
 

 

Figure 2. Behavior-Resource conceptual model 

3.1 Organization of behavioral objects 

The advantage of the proposed concept is to allow the use of the founding principles of object-
oriented modeling (Booch G., 1994) for the description and the organization of the behavior 
space. The relations of classification and aggregation in particular prove important as they 
help to structure this space and allow the easier synthesis of flexible control software. Hence a 
network of behavioral objects (Figure 1) which provide a structure for the space of behaviors. 
Figure 2b proposes an extract of the organization of the behaviors necessary for the control of 
the legged robot. It notably shows the four main behavior/controller classes used to control 
this complex system: 

- The global controller sets and controls the global motion of the platform. 
- The local controller controls the leg motion according to the retraction and protraction 

phases. 
- The retraction controller controls the leg at rest and so contributes to the global 

motion. 
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- The protraction controller brings the upheld leg into the position where it can 
contribute again to the motion of the platform. 

The local leg-behavior results from the aggregation of a local controller, a retraction 
controller and a protraction controller. The global walking behavior is then obtained through 
the combination of a global controller with six local controllers. 

3.2 Meta-behaviors 

The previous part has explained how to organize local behaviors that are necessary for the 
control of a complex system. This part now presents the composition model for the integration 
of these local behaviors into the context of more global control. It starts from the observation 
that a behavior is an object; in this sense, it can be considered as a resource and controlled by 
higher order behaviors (meta-behaviors) (Figure 3).  
 
 
 
 
 
 
 

Figure 3. Meta-behavior 

Behavioral objects are used to define the dynamic (i.e. control laws) which specifies how 
the internal state of a resource evolves within a given running mode; meta-behaviors are used 
to define the metadynamic which describes how the behaviors themselves evolve. A meta-
behavior is a behavioral object which activates, inhibits, organizes, combines or adapts other 
behaviors. Two categories of meta-behaviors are currently identified: combinators and 
adapters. 

3.2.1 Combinators 
Combinators are particular behavioral objects in the sense that they can only be applied to 
behaviors. The most conventional combinators are given by sequential, parallel, repetitive or 
conditional behaviors, as shown in Figure 4. 

 
 
 
 
 
 
 
 
 
 

 

Figure 4. Combinators for the integration of behavioral objects 

Behavior

Level of resources Resource

Meta-Behavior

resource
Level of behaviors 

n behavior 

Generic framework 

Observation Retraction Protraction Specific part AtAEP AtPEP 

Operator Composite 

components 

Atom 

Behavior 

Sequence ParallelRepetitionConditionalBehavior BasicBehaviorCondition 



IADIS International Journal on Computer Science and Information Systems 

34 

Figure 4 proposes a family of combinators that can be used for the integration of 
behavioral objects. These fall into five categories: 

- Basic behaviors which represent “behavior atoms” to be combined for more complex 
activities. Retraction and Protraction belong to this category. In general, a basic 
behavior is directly applied to a resource. 

- Repetition behaviors are currently used to define cyclic activities. This is the case of 
controls which must run constantly. For example, the locomotion behavior consists in 
repeating two behaviors – protraction and retraction – successively. 

- Conditional behaviors help to add an activation condition (or guard) to a behavior. For 
example, it must be possible to suspend the retraction behavior when the leg stretch 
degree reaches its maximum threshold. 

- Sequence behaviors allow the sequential combination of behaviors following the rule: 
“if a behavior is completed, then activate the next behavior”. For example, the 
protraction behavior of a leg follows the retraction behavior (Figure 1). 

- Parallel behaviors allow concurrent behaviors to be performed simultaneously. They 
play an important part in the control of complex systems where several activities must 
be carried out in parallel. For example, the global motion of the platform is obtained 
by combining, in parallel, the motion of the six legs. 

3.2.2 Adapters 
The concept of meta-behavior can be generalized for the adaptation or reconfiguration of 
behavioral objects. The modeling framework is refined so that a behavior can 
adapt/reconfigure another behavior. A behavioral object can be decomposed into two parts: a 
constant part and a variable or adaptable part which is used as a resource by an “adapter” 
meta-behavior (Figure 5a). It must be noted that, if need be, the adaptable part can be shared 
by several behaviors which would then benefit from any adaptation action. 

 
 
 

 
 
 

 
 

Figure 5. Meta-behavior adapter 

An illustration of this principle is the management of the robot’s motion. A global 
controller adapts the global speed of the platform according to the performance of the six local 
controllers (Figure 5b). The present case is in fact rather complex as it sets up a continuous 
process (global motion) which adapts the performance of six hybrid processes (leg behavior). 

- The global controller uses the stretch degree provided by the leg controllers to adapt 
the global speed of the platform. Here, speed is the adaptable part of the six local 
controllers. 

- The six leg controllers use the global speed of the platform adapted by the global 
controller in order to evaluate the control parameters of their legs. 

This example has illustrated the case where a process of a higher level adapts a parametric 
process at a lower level. 
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4. BEHAVIORS AND VALIDATION 

As it separates behavioral objects from resource objects, the proposed modeling framework 
helps to make the design process of control software easier. Despite its advantage in terms of 
intelligibility, the occurrence of emerging behaviors makes reliable software production 
complicated. It then becomes necessary to check and validate the software systems modeled in 
this way. A series of approaches (Magee J., Kramer J., 1999), (Mikk E., et al, 1998), (Apvrille 
P., et al, 2001) try to introduce more formal aspects and semantics into UML (OMG, 2003) 
specification of systems, to allow their validation. Since Object Oriented concepts and model 
checking techniques have matured, it is becoming possible to establish a design approach 
based on model driven engineering. The approach depends on the composition and 
transformation of models to make checking of progress and safety properties as well as 
reliable implementation possible (Figure 6). 

 

 

 

 

 

 

 

 

Figure 6. Conceptual representation of the approach proposed 

The approach consists of five parts (Rasse A., et al, 2004): 
- A structural aspect based on the behavior model (as described above). 
- A model of the dynamic aspect. In UML, Statecharts are commonly used to model the 

reactive behavior of models. However, the organization obtained through structural 
modeling allows the use of simpler and precise formalism. Here, finite state machines 
present an appropriate notation to capture, formally the behaviors associated with each 
behavioral class. 

- A particular configuration of the system in order to obtain the specific behaviors 
required. 

- A validation of the behavioral model. The finite state machines are translated into a 
process algebra called Finite State Processes (FSP) (Magee J., Kramer J., 1999). This 
leads to a validation model which can be exploited with the Labeled Transition 
System Analyzer (LTSA) model checking tool (Magee J., Kramer J., 1999). 

- Implementation which agrees with the specifications. To this aim, a translation of the 
validated model based on the recurring use of design patterns can be used to ensure 
reliable implementation. 
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The next sections partially describe the proposed approach. In a first time, the sections 4.1 
and 4.2 complete the analysis model by describing the behavioral and the configuration 
aspects which are associated with the structure. In a second time, the section 4.3 and 4.4 
describe the translation from this analysis model into the validation model and how this 
translation is achieved via Transformation Model techniques. 

4.1 Behavioral aspects 

As described above, the structural aspects have allowed to isolate and abstract - in behavioral 
classes - the dynamic aspects of each resource. To specify these dynamic aspects, each 
behavioral class is associated with a Finite State Machine (FSM). The FSMs describe the 
behavior of each resource in the form of event/state sequences. This choice has been 
motivated because this simple formalism which has formal semantics is usually used for the 
behavioral specification and can be easily integrated into a UML design. In accordance with 
the supervisory control architecture (Ramadge P.J., Wonham W., 1988), higher order 
behaviors (meta-behaviors) coordinate local behaviors to obtain the global behavior. This 
coordination is possible by a mechanism of sending/receiving events - concept of 
synchronization -. So, according to the events synchronized, the global behavior controls local 
behaviors in their state-space allowed. Figure 7 shows the discrete behaviors of the walking 
robot, associated with each controller - organized as shown in figure 2 - and one example of 
synchronization. The global controller is not the goal of this example, so its specifications 
(figure 7) will not be detailed here. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. FSM associated with behavioral classes and hierarchy of behavior 
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4.2 Configuration aspects 
The dynamic and structural aspects which have been described so far, propose a family of 
potential configurations of a system in terms of behavior, class and interaction. However, 
software design usually requires the use of many instances of the same abstraction. 
Consequently, to describe a system, it is necessary to know the topology of these instances. In 
UML, this information is specified with an object diagram (figure 1). This representation 
refines the structural aspects by specifying the links between the instances and refines the 
behavioral aspects by specifying the particular messages which are exchanged through these 
links (concept of synchronization). Thus specified, the configuration helps to understand 
complex systems and allows the design of a particular application whose behavior must meet 
the requirements. 

The analysis model is now fully specified. However, this approach doesn’t guarantee the 
obtaining of a suitable system. So, to make sure the system global behavior is in accordance 
with the requirements, the FSMs which are associated with the behavioral classes must be 
validated. To do so, the analysis model must be translated into the validation model to be 
checked by an existing model checker. As will be seen in the next sections, FSMs find an 
equivalence with formal languages used for the validation. Consequently, their use makes the 
translation easier and so, simplifies the proposed approach.  

4.3 Validation 
The aim of all validation tools is to make software design reliable and to ensure designers that 
their specifications actually correspond to the requirements (Bérard B., et al, 2001). Among 
the checking methods, two major categories can be distinguished: simulation and model 
checking. These methods are not competitive but complementary. It is sensible to associate 
them within UML design, so as to bring an effective answer to the numerous checking 
problems. However, model checking methods require the use of formal methods which 
provide a mathematical context for the rigorous description of some aspects of software 
systems. In the present approach, the validation model will be expressed using a process 
algebra notation called Finite State Processes or FSP (Magee J., Kramer J., 1999) based on 
the semantics of the Labeled Transition System (LTS). This formalism which is commonly 
used in the field of checking provides a clear and non ambiguous means to describe and 
analyze most aspects of finite state process systems (Arnold A., 1994). It allows the use of the 
LTSA model checker (Magee J., Kramer J., 1999) in which a system is structured by a set of 
elementary components whose behavior is described in FSP. So, the present approach 
proposes to collect the behaviors specified with FSM in the analysis model, then to translate 
them into FSP. The FSM formalism is also in accordance with the LTS’s semantics; 
consequently, as shown in table 1, they immediately find a correspondence with FSP. 

Table 1. Mapping from the analysis model concepts to the validation model  

Analysis model Validation model 
FSM state local process:    P=(a P).
FSM event Action prefix:    a  
classes processes 
instances process labeling:    instance_name : type_name 
configuration parallel composition:   instance_1 ||  instance_2 
synchronization relabeling operator:      a / b 
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Figure 8 represents the FSP translation of the behavior of the local controller (LC) class 
graphically described by its Finite State Machine in figure 7   

 
Figure 8. Behavioral description of a LC component in FSP 

The global behavior is obtained from all the instances of these elementary components 
(LC, GC, RC and PC) and all their interactions within a particular configuration (figure 1). In 
FSP, a process labeling (instance: Component) provides multiple instances of elementary 
components, which are in accordance with the instances of the behavioral classes of the 
analysis model. So, a set of six local controllers (lci), six protraction controller (pci), six 
retraction controller (rci) and one global controller (gc) processes are thus created. The 
ROBOT global behavior (figure 9) is expressed as a parallel composition ( || ) of these 
instances, which are executed concurrently and synchronized on their shared action using the 
FSP relabeling operator ( / ).  

 
Figure 9. Global behavior in FSP 

This ROBOT behavioral model is validated by the LTSA model checker. This tool allows 
the interactive simulation of the different possible execution scenarios of the model specified. 
This interactive exploration allows the designer to improve his confidence in the coherence 
between the expected behaviors and the models which describe them. To ensure robustness 
and flexibility in locomotion, this first non exhaustive type of validation can be complemented 
by a search for progress or safety properties violation. According to the progress rules, all the 
legs must continue to move, whatever the possible execution traces of the system. According 
to the safety rules, all the legs must not be raised at the same time. In the validation model 
proposed, great attention will be given to the progress properties which asserts that "something 
good eventually happens". The progress property previously stated consists in checking the 
occurrence of the protraction action for each local controller and their infinitely repeated 
execution. In LTSA, the progress properties are expressed with the progress key word (figure 
10). 

 
Figure 10. Progress properties in FSP 

If this property is violated by the model, the analyzer produces the sequence of actions that 
leads to the violation. So, in accordance with the result obtained, the designer can modify his 
analysis model, until the obtaining of a suitable control software. This approach allows the 
coherent translation between an analysis model and a validation model and thus ensures the 
validation of the controller behaviors.  

progress Cycle_lc2 = {lc2.protraction }. 
… 

progress Cycle_lc6 = {lc6.protraction }. 

LC              =   WAIT_PROTRACTION, 
WAIT_PROTRACTION  = ( protraction  PROTRACTION              ), 
PROTRACTION        = ( aep                WAIT_RETRACTION      ), 
WAIT_RETRACTION   = ( retraction      RETRACTION                 ), 
RETRACTION         = ( pep            WAIT_PROTRACTION         ). 

||ROBOT =  ( lc1:LC || lc2:LC || pc1:PC || ... || gc:GC ) / {gc.protraction_lc1 / lc1.protraction,.....}. 
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4.4 Model Transformation 

The model transformations that were intended to produce the validation model in an 
automated way were prototyped using the MetaEdit tool (MetaEdit, 2005). Its use implies two 
modeling stages: 

- The first stage, at the meta-level, consists: 
o first in describing the entities of the specification meta-model with the meta-

meta-model of MetaEdit called GOPRR (Graph, Object, Property, Relation, 
and Role). 

o then in writing the transformation rules in the form of script (figure 11.b), 
rules which will have to be applied to the instances of this meta-model in 
order to obtain the corresponding target models. 

- The second stage, at the model level, consists:  
o first in specifying the specification model (figure 11.a) graphically, in 

accordance with its meta model. 
o then in executing the transformation rules on the entities of this model in 

order to obtain the entities of the target model (FSP code) (figure 11.c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. a) Modeling of the specification model in MetaEdit, b) Transformation rules and c) FSP code 
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The FSP code obtained in this way can directly be analysed with the LTSA tool to ensure 
that the specification model satisfies the designer's requirements.  

As suggested, the aim of the present approach is to produce an executable code for the 
implementation of validated control software. however even if the joint use of object-oriented 
methods, checking tools and model transformation techniques makes software development 
easier and more reliable, it does not guarantee that the implementation conforms with the 
validation. That is why, the approach presented in this paper is part of a global software 
development (figure 1) in which the use of an runtime platform – also in conformity with LTS 
semantic – helps to reduce the semantic gap between the models and thus allows the easier 
generation of a code in accordance with the specification and validation models.  

So, this approach allows the creation of a coherent software development cycle that 
integrates specification, validation and implementation phases. 

5. CONCLUSION 

This paper has presented a modeling framework to define control software for complex 
systems using the example of a controlled hexapod robot. It is based on an architecture model 
where objects are organized according to two conceptual levels – one for resources and one 
for behaviors. This proposal reduces the apparent complexity of a system by separating the 
nature of the entities it is composed from their dynamic. The object-oriented concepts then 
allow the identification and organization of the different behavior classes. Moreover, some 
behavioral objects can be considered as resources for behaviors of a higher order (meta-
behaviors) so that they can be integrated, combined or adapted. The same notation may then 
be used to represent the static, dynamic and metadynamic aspects of a system. Finally, the 
necessity to consider a rigorous process for software design which integrates the different 
design phases of modeling has been highlighted. To complete the proposed modeling 
framework, a coherent model-based approach supported by model-checking tools that ensures 
the development of validated applications is considered. Moreover, an step of implementation, 
based on the recurring use of design patterns, completes this work and allows an 
implementation in accordance with the validation (Rasse A., et al, 2004). 
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