
IADIS International Journal on Computer Science and Information Systems
Vol. 1, No. 1, pp. 15-29
ISSN: 1646-3692

 15

EXTENDED TREE-PATTERN CLUSTERING
TECHNIQUES FOR MASSIVE XML STORAGES

Weiyi Ho
School of Computer Science & IT,

Nottingham University, Nottingham NG8 1BB, UK

Li Bai

School of Computer Science & IT,
Nottingham University, Nottingham NG8 1BB, UK

ABSTRACT

The Extensible Mark-up Language (XML) is an emerging standard for describing data on the Web. As
the widespread activities of the Internet and the Web results in vast amounts of data to be generated
everyday, the manipulation of such semi-structured textual data is however becoming an important issue
in XML storage research. The unique feature of semi-structured data is generally suitable for storage in a
tree-like data form. Locating data in this form is based on tree-pattern matching techniques. As a result,
effectively evaluating path expression is the key to provide efficient access to such tree-like data storage.
In this paper, we apply two novel signature based access methods, which can significantly extend the
scope of tree-pattern cluster in order to navigate massive XML databases. We present the process of
producing the signatures in details, and further provide the algorithms to demonstrate how they would
work. We also show the advantages of using extended tree-pattern clustering techniques in handling
large amounts of XML documents.

KEYWORDS

XML, Tree Pattern, Path Expression.

1. INTRODUCTION

XML is an emerging standard for representing data (Tim Bray et al., 2004). The extensible
nature of XML provides flexibility in describing variable structure of data. It is becoming a
standard data format for data exchange and data integration. XML is also known as an easy-to-
write and easy-to-parse language which offers a way to exchange data between varieties of
applications on the Internet (Ronald Bourret, 2004).

From the enterprise aspect, a variety of information management systems have been
widely adopted in daily business activities. However, each of the systems has its own data
structure and access methods, resulting in data heterogeneity. Relational database management
systems benefit from the universal acceptance of Structured Query Language (SQL) as the
primary means of obtaining desired data whilst document and email repositories are generally

IADIS International Journal on Computer Science and Information Systems

 16

accessed using text search engines with varying interfaces and capabilities. In view of the fact
that these systems were not designed with interoperability in mind, each must generally be
accessed using source specific applications or application programming interfaces (APIs).

XML data is generally defined in a tree or graph based, self-describing object instance
model (Serge Abiteboul et al., 1997). Existing approaches for storing semi-structured data fall
into two broad categories: Flat streams and Meta-modelling (Carl-Christian Kanne & Guido
Moerkotte, 2000). In the former, XML data is stored as serialized byte streams, for example,
as XML files in a file system. This method provides fast access when retrieving the entire
document or large parts of the document, since by a single index lookup or positioning the
disk head once, the entire document or fragment can be retrieved. However, problems can
occur when retrieving data in any other form. In the latter, XML data is stored in conventional
databases which use the relational database as its data model. Since XML provides the
flexibility for storing data with differing structures, the semi-structured data is incompatible
with the flat structure of conventional database tables. Therefore, using the relational database
for handling XML usually introduces performance overheads particularly in document
reconstruction. For this reason, our research is focused on document centric situation where a
large number of documents exist that might be small or extremely large in size. Further, for
querying XML documents a number of query languages has been proposed, such as Lorel
(Jason McHugh et al., 1997), XML-QL (Alin Deutsch et al., 1998), Quilt (Jonathan Robie et
al., 2000) and XQuery (Scott Boag et al., 2003). They have one characteristic in common, that
they support regular path expressions to navigate through the logical, hierarchical structure of
an XML document. Evaluation of the regular path expressions is normally costly, as it
involves the exploration of the descendant of a given set of nodes. Too many nodes have to be
visited unnecessarily due to the blindness of a subtree (descendant) to a node (Sangwon Park
& Hyoung-Joo Kim, 2002). Therefore, the efficiency of evaluating path query plays an
important role in XML query processing. Although XML related fields have been intensively
studied in recent years by the database research community, little research has been done on
path evaluation in large volume XML documents. In this paper, we propose two efficient
approaches based on the prevention of unnecessary visits to, first, the documents and, second,
the subtrees. By doing so, we can improve query execution performance significantly.

The rest of the paper is organized as follows. Section 2 gives a brief description of related
work. Section 3 discusses the observations that led us to the introduction of the new methods.
The proposed methods are described in detail along with the algorithms in Section 4. In
Section 5, we report the findings of the experimental results. Finally, section 6 contains some
concluding remarks and directions for future work.

2. RELATED WORK

A considerable amount of work has been undertaken on indexing for semi-structured data
(Brian Cooper et al., 2001;Chin-Wan Chung et al., 2002;Roy Goldman & Jennifer Widom,
1997;Tova Milo & Dan Suciu, 1999). Many techniques have been developed to support label
path expressions and have concentrated on indexing simple path expressions. Goldman and
Widom proposed a path index called strong DataGuide (Roy Goldman & Jennifer Widom,
1997). The strong DataGuide is restricted to a simple label path and is not useful in complex
path queries with several regular expressions (Tova Milo & Dan Suciu, 1999). The

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 17

construction of a DataGuide is like the conversion of a non-deterministic finite automation
(NFA) into a deterministic finite automation (DFA). This conversion takes linear time when
the source is a tree and exponential time in the worst case when the source is a graph (Chin-
Wan Chung et al., 2002). One of the problems in building a DataGuide of a deeply nested
graph is that it may end up creating a node for every subset of nodes in the data source.
Therefore, the size of data created by a DataGuide could grow exponentially to be larger than
the original data.

Milo and Suciu proposed another index family, the 1/2/T-index (Tova Milo & Dan Suciu,
1999). 1-index keeps track of all the absolute paths from root node. It represents the same set
of paths as the DataGuide. It can be seen as a non-deterministic version of the strong
DataGuide. 1-indexes focus on the queries which search for nodes matching some arbitrary
path expression in the database from the root. 2-indexes cover all the relative paths and focus
on the queries which search for pairs of nodes matching some arbitrary path expression. T-
index is a template-based indexing technique. The idea of T-index is similar to that of access
support relations in object-oriented databases. T-index builds indexes not on all paths, but on
selected path templates. When the data is very irregular and cyclic, indexing all the paths as
with the 1/2-index may become too large and inefficient. Restricting the class of queries
supported by the index structure can reduce the index complexity and yield better
performance.

The Index Fabric was introduced by Cooper et al (Brian Cooper et al., 2001). It shares an
idea similar to the strong DataGuide in keeping all label paths starting from the root element,
but with a better extension to replace values with identifiers. Each label path is first encoded
with one or more letter. Each label path to each XML element is then encoded as a sequence
of encoded labels followed by the data value as a string. For example, the path
/Menu/Food/Calories[970] is encoded as MFC970. The method stores the encoded strings in
an efficient index such as the Patricia trie. A Patricia trie is a simple form of compressed trie
that merges single child nodes with their parent nodes. The Patricia tree embeds an inherently
balanced mechanism to guarantee constant access time in path lookups. Path expressions
including predicates on values are performed as a string search. It is particularly beneficial
when the structure of the data is changing, variable or irregular. However, since the index only
records the elements with value (it does not keep information on non-leaf nodes and the order
of elements in documents) it has performance overheads in handling partial matching path
queries.

Chung et al. proposed an adaptive path index for XML data named APEX (Chin-Wan
Chung et al., 2002). While other methods, such as DataGuide and 1/2-index, maintain all paths
from the root node, APEX only adopts frequently used paths to improve the query
performance. APEX is constructed by adopting a data mining algorithm, a sequential pattern
mining technique, to summarize paths that appear frequently in the query workload. An APEX
index consists of two structures, a graph structure representing the structural summary of the
data, and a hash tree structure that associates required paths to nodes of the graph structure.
For efficiency, each node of the hash tree is implemented as a hash table on the labels.
Terminal nodes refer to a graph structure node. The hash tree is used both to find nodes of the
structure graph for a given label path and for incremental updates.

To sum up, we need to pay more attention to several issues. 1) Size of indexes. 2)
Document update. 3) Partial match. 4) Structural query. First of all, the tradeoff between the
size of indexes and performance is an important issue in database related fields. Increasing
space usage of indexes usually involves overlapping parts which are stored redundantly. The

IADIS International Journal on Computer Science and Information Systems

 18

approaches, such as DataGuide and 1/2-index, will produce a large index size when the data is
highly nested. That can result in degradation of query evaluation, since evaluating a query on a
large index is just like evaluating the query on the base data (Raghav Kaushik et al., 2002).
Also, the construction and re-construction of the index is often costly, particularly if the data
needs to update frequently. Secondly, many queries on XML data involve a partial match,
such as branching query with the self-or-descendent axis (“//”) and wild cards (“*” and “?”),
which requires exhaustive navigation of the data source. It can be even more complicated
when it comes with structural query which structural relationships specified in the query,
namely, parent-child and ancestor-descendant relationships. In such circumstances the path
exploration can grow exponentially. Therefore, we are attempting to tackle this problem by
avoiding unnecessary traversing. Our LS/SST approach exposes the subtree to the parent node,
in order to provide an early notification of the existence of a node in the subtree.

3. APPLYING SIGNATURES TO TREE PATTERNS

Table 1. Example hash values derived from hash function H

Hash function Hash value
H(menu) 0000 0100 1000
H(food) 0000 0010 0010
H(drink) 0000 1000 0010
H(category) 0001 0000 1000
H(name) 0000 1010 0000
H(price) 0010 0000 0010
H(description) 0000 1001 0000
H(calories) 0001 0001 0000
H(chef) 0010 1000 0000
H(id) 0000 0000 0011
H(first) 1000 0000 0001
H(family) 1100 0000 0000
H(email) 0000 0000 1010
H(middle) 1000 0001 0000
H(phone) 0100 0000 0100

During the last few years a number of index approaches have been intensively studied in
order to provide better manipulation of data. The signature methods described in (Haifeng
Jiang et al., 2002;Man-Kwan Shan & uh-Yin Lee, 1998;Yangjun Chen, 2002) have
particularly focused on text retrieval and object-oriented methodology. In this paper, we apply
the signature approach to build tree patterns in order to provide new access methods. The
signature of each node is formed by first hashing each value in the block into a bit string and
then superimposing all bit strings generated from the block into the block signature. The
concept of ‘block’ here is actually the subtree pattern of the XML DOM tree. The details will
be discussed in Section 4.

We first define some notations for signature description. Let the hash value of the name of
a node i be H(i), and the node signature be NS(i). The NS(i) is the ORing of all the hash
values of node i’s descendant nodes. If H(x) = H(x) ∩ NS(i) then there may be the name x in
the subtree of node i. Otherwise, if H(x) ≠ H(x) ∩ NS(i), then we can be assured that the name

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 19

x does not exist in the subtree. Table 1 shows the example hash values. Algorithm 1 gives the
idea for producing the signature of a node.

Algorithm 1. Produce the signature of a node
1. function getNodeSignature (node)
2. /* INPUT: node */
3. /* OUTPUT: node signature NS */
4. {
5. NS = 0;
6. foreach DescendantNode in node {

 /* get all nodes in the subtree */
7. if (DescendantNode is an Element or

Attribute node) {
8. NS = NS U Hash(DescendantNode.Name);

 /* bitwise OR operation*/
9. }

10. }
11. return NS;
12. }

4. PROPOSED METHODS

In this paper we propose a generic access method by clustering signature tree-patterns in two
aspects, document level and subtree level, respectively. Firstly, we assume an XML document
is represented as a DOM tree, an example of which can be found in Figure 1, and there is hash
function H for creating the hash value. The label path contains the names of the element or
attribute in the DOM tree. Therefore only element and attribute nodes are involved in creating
the signature.

4.1 Document Level Signature (DLS) Clustering

The Document Level Signature (DLS) clustering is the OR-ed signature of the nodes that
reside in the same level of the DOM tree. Moreover, the Document Level Signature Path
(DLSP) is the path of document level signature arranged according to the level of the DOM
tree. Figure 1 shows an example of DLS clustering processes for XML document D1 and D2.

Definition 1. (Document Level Signature): We assume the number of nodes in document D
is n. The document level signature of the lth level of document D is denoted by DLSD (l).

DLSD (l) = OR Operation(if H(i) in level l) where i = 0 .. n-1.

Definition 2. (Document Level Signature Path): We assume the document level signature
path of an XML document D, denoted by DLSPD, where the height of document D is h.

DLSPD = DLS(1) / DLS(2) / … / DLS(h)

IADIS International Journal on Computer Science and Information Systems

 20

4.2 Subtree Level Signature (SLS) Clustering

The Subtree Level Signature (SLS) clustering includes three fields, Level (l), Index (i) and
Node Signature (NS), respectively. To begin with, level (l) represents the level of a node in the
XML DOM model, which can be easily derived from the path expression of a node. For
example, the path expression of the”food” element is ”#/menu#/food”, so we know it is
located in level 3 (root in level 1). Furthermore, the order of Subtree Level Signature is
basically obtained from depth first traversal of the DOM tree, and corresponds to index i,
where i = (0 … n-1) in a DOM tree with n nodes in total. For a better understanding of the
order, reader can refer to Figure 2. Figure 2 shows an example of SLS clustering procedure for
XML document D1.

ure)NodeSignatIndex,SLS(Level,
Definition 3. (Subtree Level Signature): The subtree level signature of ith node of document
D, denoted by SLSD (i) and i represents the index of node. The hash value of ith node is
denoted by H(i). We assume the number of descendant of ith node is m. (Here we use ‘U’ to
denote the bitwise OR operator.)

m)(i H U U 2)(i H U 1)(i H (i) SLSD +…++=
The SLS is in a sequential form of tree structure, and as mentioned earlier it is also a depth

first traversal. Because of that there is an interesting feature in the SLS formation, which
physically clusters the subtree together on a sequential basis. This property offers an efficient
way to identify the subtree clustering. We then show this concept in Definition 4 below.

Definition 4. (Subtree of a node): The ith node in SLS denoted as node(i), where the subtree
of ith node as ST(i). We assume the number of descendant of node(i) is m.

Figure 1. Document Level Signature (DLS) clustering for XML Document D1 and D2

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 21

ST(i) = node(i + 1), node(i+2), …, node(i + m)

4.3 The Algorithms for Creating DLS and SLS

As mentioned earlier in this section, the index in SLS represents not only the order, but also
provides a direct mapping of each node in the DOM tree and follows depth first traversal. In
building the SLS clustering, the idea of using index plays an important role in keeping tree
structure and node signatures in line. From definition 3, the node signature (NS) of SLS is
derived from ORing all the hash values of the nodes in the subtree (all descendants).
Algorithm 1 in Section 3 depicts the producing process of node signature. Algorithm 2 is an
example to create an SLS instance in an array implementation.

Algorithm 2. makeSLS (rootNode)
1. function makeSLS (rootNode)
2. /* INPUT: root node */
3. /* OUTPUT: SLS in an array */
4. {
5. m = NumberOfNodes(rootNode)
6. for(i = 0; i < m; i++) {
7. SLS[i] [0] = node(i).getLevel;
8. SLS[i] [1] = i;
9. SLS[i] [2] = getNodeSignature(node(i));

10. }
11. return SLS;
12. }

Root

menu

food

food

XML Data Graph for Document D1

category

name

price

name

price

Subtree Level Signature (SLS)

4

4

3

4

4

4

3

2

1

Level
(l)

15

14

13

5

4

3

2

1

0

Index
(i)

0000 0000 0000

0000 0000 0000

1111 1011 0111

0000 0000 0000

0000 0000 0000

0000 0000 0000

1110 1011 1011

1111 1011 1111

1111 1111 1111

Node Signature (NS)

Start point

End point

Subtree
Of

node (2)

 Figure 2. Subtree Level Signature (SLS) clustering for XML Document D1

IADIS International Journal on Computer Science and Information Systems

 22

As the level is clearly defined in the Subtree Level Signature (SLS) clustering, it provides a
better mechanism to retrieve all the nodes in the same level without visiting the entire tree
structure in order to calculate Document Level Signature (DLS). Here we give an example of
creating DLS in a vector as shown in Algorithm 3.

Algorithm 3. makeDLS (SLS)
1. function makeDLS (SLS)
2. /* INPUT: subtree level signature */
3. /* OUTPUT: document level signature vector */
4. {
5. Vector DLS = new Vector();
6. foreach i in SLS {
7. l = SLS[i][0];
8. if (DLS.elementAt(l) Exist)
9. DLS.elementAt(l) = DLS.elementAt(l) U getNodeSignature(node(i));

10. /* bitwise OR operation*/
11. else DLS.insertElementAt(getNodeSignature(node(i)), l);

12. }
13. return DLS;
14. }

Since the subtree is serial, the start position of a subtree will be the next node of node(i)
which is node(i+1) shown in the Definition 4 equation. Then we need to know the position at
which that subtree ends. Level in SLS will be an indicator for the sign of end, as all the nodes
in a subtree should have a greater level than the parent node. Therefore, if the level of a node
is equal or less than the level of node(i), that indicates the end of the subtree. An example of
the subtree of node(2) can be found on the right hand side of Figure 2, in this case the subtree
is from node(3) to node(12). Algorithm 4 shows this concept that applies to the calculation of
the number of descendants.

Algorithm 4. getNumberOfDescendant (node)
1. function getNumberOfDescendant (node)
2. /* INPUT: a given node */
3. /* OUTPUT: NumberOfDescendant */
4. {
5. nodeIndex = node.getIndex();
6. l = SLS[nodeIndex][0];
7. i = nodeIndex + 1;
8. /* nodeIndex + 1 is the start position of subtree */
9. while (SLS[i][0] > l) {

10. i++;
11. }
12. return (i – nodeIndex);
13. /* i is the index of the end position of subtree */
14. }

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 23

5. EXPERIMENTS

Extensive experimental studies have been conducted to exam our DLS and SLS tree-pattern
clustering approaches. We have implemented our approaches in Java, and carried out a series
of performance experiments in order to observe the effectiveness of the approaches. We first
investigate the construction time of the DLS and SLS on different data sets, and then go on to
a performance study over queries. The different characteristics of each query are also
discussed and reported in detail.

5.1 Experiment Setup

The experiments were conducted on a PC with Intel Pentium III processor with 866 MHz and
512 MB main memory running Windows XP. The algorithms mentioned in the paper were
implemented in Sun Java 2 SDK, Standard Edition 1.4.2. We utilized IBM’s XML4J 3.2.1
(XML parser for Java) for parsing XML documents. The data sets were stored on the local
disk. We ran our experiments using three different sets of XML data and queries. They are
summarized below. The characteristics of the different data sets used in the experiment can be
found in Table 2.

• Shakes: The first data set is the Jon Bosak collection of the plays of Shakespeare (Jon
Bosak, 2004). The Shakes Play XML data shows a minor irregularity in the structure.
Since the Play does not involve ID and IDREF, it is a pure tree structured XML data.
There are 37 documents, totaling 7.5 Mb of data.

• XMark: The second data set is from the XML Benchmark project (A.R.Schmidt et al.,
2001). The XMark data models an auction website, and the document consists of sub
structures such as item (objects for sale), person (buyers and sellers), category,
open_auction, and closed_auction, etc. The tag names are highly self-explanatory and
the tag itemref, for example, is an IDREF value pointing to item nodes. XMark dataset
has more complicated structure compared to Shakes. In our experiments, we use two
XMark data sets generated by xmlgen (A.R.Schmidt et al., 2001) with a scaling factor
0.1 , 0.2 and 0.4, respectively.

• Shakes + XMark 0.2: The third data set combines Shakes Play and XMark data with
scaling factor 0.2 to represent a more complicated document-centric situation. The data
is highly irregular and large numbers of XML files are involved in query answering.

Table 2. Details of the data sets

Name Size (MB) Nodes
Shakes 7.5 179,763
XMark 0.1 11.3 167,911
XMark 0.2 22.8 336,333
Shakes + XMark 0.2 30.3 516,096
XMark 0.4 46.4 684,442

IADIS International Journal on Computer Science and Information Systems

 24

Table 3. Test queries

Query Path Query Shakes XMark
0.1,
0.2,
0.4

Q1 /PLAY √
Q2 /PLAY/ACT/SCENE/SPEECH √
Q3 /PLAY[PLAYSUBT = ‘HAMLET’] √
Q4 //*/TITLE √
Q5 //NON-EXIST √
Q6 /site √
Q7 /site/regions/*/item/name √
Q8 //item[location = ‘United States’] √
Q9 //item/name √

5.2 Performance Results

5.2.1 Building Time
The building time of Document Level Signature and Subtree Level Signature is basically
derived from the sum of the time spent on XML parsing and generation time of hash values,
DLS and SLS. We assume that there are n XML files in the given directory. The formula
below indicates how the DLS/SLS building time is summed up.

)()()()(
1

_sin nTnTnTnTT DLSSLS

n

n
valuehashgpartotal +++= ∑

=

We built five datasets separately with DLS/SLS tree-pattern clustering techniques. They
are Shakes, XMark 0.1, XMark 0.2, Shakes + XMark 0.2 and XMark 0.4, respectively. The
building time for each dataset is summarised in Figure 3. From the experiment we observe that
the building time increases with a nearly linear growth of the size of datasets. When the source
XML document size is 46.4M bytes, the building time doubles compared with the dataset in
22.8M bytes. Although the size of XMark 0.1 is 1.5 times bigger than the Shakes dataset, the
building time difference does not change notably. It is due to the characteristic differences
between Shakes and XMark. The Shakes dataset has a simpler structure with more textual data
content; while in contrast, the XMark dataset has a more complicated structure with less
textual data content. It appears that most of the building time is spent in generating Document
Level Signature and Subtree Level Signature in most cases. To be more precise the generation
of the DLS is far cheaper than the SLS. The time spent in creating SLS is highly correlated
with the complexity of tree structure. The Shakes dataset contains the majority of text which
costs less time when creating DLS and SLS but more time on Tparsing.

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 25

Figure 3. Native VXD Building Time

Note that the building time of the forth dataset, which is Shakes + XMark 0.2, is 80.1
seconds. It is roughly the sum of the individual building times of Shakes (23.7 sec.) and
XMark 0.2 (54.6 sec.). That makes sense, because of the fact that Tparsing(Shakes + XMark 0.2)
equals to Tparsing(Shakes) plus Tparsing(XMark 0.2). It appears the same way for Thash_value, TDLS
and TSLS. The only difference is the switching cost between Shakes and XMark 0.2.

5.2.2 Query Execution Time
The query execution time for Q1 to Q5 using Shakes Play dataset is shown in Figure 4. Query
Q1 is a short and simple path query directly from document root which means that there is no
need for the query executor to visit the whole document. In Shakes Play dataset each XML file
contains exactly one result for the path of “/PLAY”. The DLS/SLS technique outperforms the
DOM model because the logical structure is handled separately in Subtree Level Signature
Cluster. Query Q3 functions in a similar way, but in addition contains an exact match of
“HAMLET”. Q1 and Q3 are the first to provide surprises in the experiment. It turns out that
the DLS/SLS technique is not really helpful when the query is particularly simple. For a
simple query with a longer path such as query Q2, SLS cuts down the processing time by 24%
compared with the DLS approach alone. The DOM Model requires 3.6 times more processing
time than SLS technique. Q2 takes more time than other queries due to its larger result set,
totalling 30,933 nodes.

Building Time

0
20
40
60
80

100
120
140

7.5 11.3 22.8 30.2 46.4

Shakes XMark 0.1 XMark 0.2 Shakes +
XMark 0.2

XMark 0.4

Size (MB)

Ti
m

e
(S

ec
.)

DLS/SLS

IADIS International Journal on Computer Science and Information Systems

 26

Figure 4. Query Execution Time Using Shakes Play Dataset

Query Q4 is a typical branching query with a wildcard “*”. Although the result set of Q4 is
1,031 nodes, which is much smaller than 30,933 nodes in Q2, the processing time of Q4 is still
costly in the DOM model. The DOM model suffers from requiring a traversal in depth.
Conversely, the DLS/SLS takes some advantage in knowing the existence of a node earlier to
avoid unnecessary travelling. SLS provides about a 25% performance boost up in evaluating
query Q4. A simple branching query with a descendant axis at the leading place like query Q5,
the DOM model requires a full tree structure scan, since it is possible that the given path is
located in the very end of tree.

Despite the fact that the “NON-EXIST” string is not in any file of Shakes Play, the DOM
model needs 17.6 seconds of processing time in order to get the result. As in SLS technique,
the given path query cannot pass the hash value examining (Hash Exam) at the very beginning
stage. As a result, SLS significantly outperforms the DOM model (up to 22 times faster).

Figure 5. The Result Set of Test Query

Shakes Play

0
5

10
15
20
25
30
35

Q1 Q2 Q3 Q4 Q5

Query

DOM
DLS
SLS

Shakes Play

0
5

10
15
20
25
30
35

0 1 37 1031 30933

Q5 Q3 Q1 Q4 Q2

Result Set (Node)

Ti
m

e
(S

ec
.)

DOM
DLS
SLS

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 27

In general, the bigger result sets require more time for the query executer to locate, but is
not always true considering different types of queries. Picturing a complicated query with one
result, it might take much longer than a simple query with considerable amount of results.
Figure 5 shows the relationship between the size of result sets and query execution time. For
similar queries, such as Q1 to Q3, the query evaluating time remains stable with consideration
to the size of result sets. Without considering Q5, which is a rather special case, the execution
time grows dramatically when querying with the DOM model with large results. The DLS and
SLS are probably having more advantages in navigating paths and locating qualified nodes.
The DOM model requires parsing XML document each time, as in DLS and SLS we only
need to load corresponding mappings and signature files. The data content can be located only
when it is required, for example in query Q3.

Figure 6. Query Execution Time Using XMark Dataset

Figure 6 represents the results of query Q6 to Q9 based on XMark 01, 0.2 and 0.4,
respectively. Query Q6 is a short and simple path query, and the result set is very small (15
nodes). The execution time of Q6 has a linear growth rate when performing a query on the
increased dataset.

Query Q7 is a simple path query with a longer path and wildcard, and Q8 is a branching
query starting from descendant axis. It is important to note that the results of Q7 and Q9 are
identical. However, the execution times of query Q9 are twice those in most cases in
comparison to Q7. Evaluating a branching query, such as Q9, is far more costly than a simple
path query (Q7), since a complete scan of the document structure may be required. SLS
technique outperforms others in most cases, except Q6. Q6 is quite simple, but SLS needs to
do extra hash examining and signature testing compared with DLS. Therefore, the
performance differences between DLS and SLS are not distinguished on both query Q6 and
Q7. That means the query executer performs similarly with or without the aid of DLS and SLS
techniques. The performances of Q8 and Q9 are very much alike in all the approaches, due to
the similarity of these two queries.

XMark

0
10
20
30
40
50
60
70
80
90

Q6 Q7 Q8 Q9 Q6 Q7 Q8 Q9 Q6 Q7 Q8 Q9

XMark 0.1 XMark 0.2 XMark 0.4

Ti
m

e
(S

ec
.)

DOM
DLS
SLS

IADIS International Journal on Computer Science and Information Systems

 28

6. SUMMARY AND FUTURE WORK

In this paper, we proposed two signature based approaches, namely DLS and SLS, which are
easily adapted to data models for efficiently accessing XML documents. In a data-centric
situation, data is stored with a certain structure and probably within one extremely large file,
however in a document-centric environment where documents largely exist in relatively
complex structures (Leigh Dodds, 2001). We have examined both aspects and provided simple
solutions. DLS and SLS serve different purposes, the first can rule out XML documents which
do not contain desired information, while the latter can significantly reduce unnecessary
traversal in a document. Also they can work complementally, as DLS can first rule out the
unqualified documents, and SLS can then be used to avoid unnecessary subtree visits.

In summary, our approaches have several desirable features: 1) it provides a simple
mechanism to map into the data model, 2) it reduces unnecessary file traversal, 3) it minimizes
redundant subtree visiting, 4) it skips unnecessary signature checking and 5) it has low storage
overheads. In this paper, we have described the prototype for our ongoing research. Our
experimental results confirm that DLS/SLS provides an efficient way for tree-pattern
navigating in XML data. This is particularly notable if the query is complex or branchy. We
are currently working on developing a complete query processing engine based on this
method. We find the idea of using Document Level Signature to be quite beneficial due to the
fact that XML Query languages, XQuery for example, use “axis” heavily in evaluating
queries. And if the DTD information of XML exists, it can give great help for producing
signatures. In the future we plan to concentrate on query rewriting and optimizing techniques
to further improve query execution.

REFERENCES

A.R.Schmidt, F.Waas, M.L.Kersten, D.Florescu, I.Manolescu, M.J.Carey, & R.Busse. April 2001.
XMark -- An XML Benchmark Project. Technical Report. Available at:
http://monetdb.cwi.nl/xml/index.html

Alin Deutsch, Mary Fernandez, Daniela Florescu, Alon Levy, & Dan Suciu. August 1998. XML-QL: A
Query Language for XML. Available at: http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

B.McWhirter & .Strachnan. 2004. Jaxen: Universal Java XPath Engine. Available at:
http://jaxen.sourceforge.net/

Brian Cooper, Neal Sample, Michael J.Franklin, Gisli R.Hjaltason, & Moshe Shadmon. September 2001.
A Fast Index for Semistructured Data. Proceedings of the 27th International Conference on Very
Large Data Bases , pp.341-350.

Carl-Christian Kanne & Guido Moerkotte. March 2000. Efficient Storage of XML Data. Proceedings of
the 16th International Conference on Data Engineering , pp.198.

Chin-Wan Chung, Jun-Ki Min, & Kyuseok Shim. June 2002. APEX: An Adaptive Path Index for XML
Data. Proceedings of the 2002 ACM SIGMOD international conference on Management of data ,
pp.121-132.

Chris Faloutsos. 1985. Signature files: design and performance comparison of some signature extraction
methods. Proceedings of the 1985 ACM SIGMOD international conference on Management of data ,
pp.63-82.

Daniela Florescu & Donald Kossman. September 1999. Storing and Querying XML Data using an
RDBMS. IEEE Data Engineering Bulletin 22[3], pp.27-34.

EXTENDED TREE-PATTERN CLUSTERING TECHNIQUES FOR MASSIVE XML STORAGES

 29

Haifeng Jiang, Hongjun Lu, Wei Wang, & Jeffrey Xu Yu. 2002. Path Materialization Revisited: An
Efficient Storage Model for XML Data. Thirteenth Australasian Database Conference 24[2], pp.85-
94.

Jason McHugh & Jennifer Widom. 1999. Query Optimization for XML. Proceedings of the 25th
International Conference on Very Large Data Bases , pp.315-326.

Jason McHugh, Serge Abiteboul, Roy Goldman, Dallan Quass, & Jennifer Widom. February 1997. Lore:
A Database Management System for Semistructured Data.

Jayavel Shanmugasundaram, Eugene Shekita, Jerry Kiernan, Rajasekar Krishnamurthy, Efstratios
Viglas, Jeffrey Naughton, & Igor Tatarinov. September 2001. A General Technique for Querying
XML Documents using a Relational Database System. ACM SIGMOD Record 30[3], pp.20-26.

Jon Bosak. 2004. The Plays of Shakespeare. Available at:
http://metalab.unc.edu/bosak/xml/eg/shaks200.zip

Jonathan Robie, Don Chamberlin, & Daniela Florescu. March 2000. Quilt: an XML Query Language.
Available at: http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html

Leigh Dodds. October 2001. XML and Databases? Follow Your Nose. Available at:
http://www.xml.com/pub/a/2001/10/24/follow-yr-nose.html

Man-Kwan Shan & uh-Yin Lee. 1998. Placement of Partitioned Signature File and Its Performance
Analysis. Information Science: An International Journal 104[3-4], pp.321-344.

Raghav Kaushik, Philip Bohannon, Jeffrey F Naughton, & Henry F Korth. June 2002. Covering Indexes
for Branching Path Queries. Proceedings of the 2002 ACM SIGMOD international conference on
Management of data , pp.133-144.

Ronald Bourret. July 2004. XML and Databases. Available at:
http://www.rpbourret.com/xml/XMLAndDatabases.htm

Roy Goldman & Jennifer Widom. August 1997. DataGuides: Enabling Query Formulation and
Optimization in Semistructured Databases. Proceedings of 23rd International Conference on Very
Large Data Bases , pp.436-445.

Sangwon Park & Hyoung-Joo Kim. March 2002. SigDAQ: an enhanced XML query optimization
technique. Journal of Systems and Software 61[2], pp.91-103.

Scott Boag, Don Chamberlin, Mary F.Fernández, Daniela Florescu, Jonathan Robie, & Jérôme Siméon.
August 2003. XQuery 1.0: An XML Query Language W3C Working Draft.

Serge Abiteboul, Roy Goldman, Jason McHugh, Vasilis Vassalos, & Yue Zhuge. 1997. Views for
Semistructured Data.

Sun Microsystems. July 2003. White Paper Java Business Integration - A new architecture standard for
business integration. Available at:

 http://developers.sun.com/techtopics/webservices/reference/whitepapers/jbiwhitepaper.pdf
Tim Bray, Jean Paoli, C.M.Sperberg-McQueen, Eve Maler, & François Yergeau. February 2004.

Extensible markup language (XML) 1.0 third edition. Available at: http://www.w3.org/TR/REC-xml/
Tova Milo & Dan Suciu. January 1999. Index Structures for Path Expressions. Proceeding of the 7th

International Conference on Database Theory , pp.277-295.
W3C. July 2004. Document Object Model (DOM) Technical Reports. Available at:

http://www.w3.org/DOM/DOMTR
Yangjun Chen. May 2002. Signature files and signature trees. Information Processing Letters 82[4],

pp.213-221.

